
This is the complete text of the original manual which came with Commodore 64 Logo
by Terrapin, Logo- A Language for Learning, also known as The Commodore 64 Logo
Tutorial. This document was optically recognized (OCR) with OmniPage SE. While
every effort has been made to correct OCR errors, especially in program examples, it was
not possible to proof-read the entire document. If you find any errors in this document,
please contact me at mikeebean@hotmail.com and I will make every effort to correct it,
thank you.

Note: OCR had great difficulty seeing and allowing colons before commands, commands
containing decimals, and quotes next to apostrophes. Additionally, the original manual
didn’t use a monospace font for program examples, making spaces within the listing
nearly impossible to discern. Indented text in the examples was also inconsistent.
Following along with the Tutorial, or a familiarity with the language, should make any
errors fairly obvious, if there are any. Also, Logo will certainly complain or have
undesired results, making errors easy to point out. Again, please inform me if you
discover any!

I hope this document will be useful to you in your exploration of the world of Logo!

---Front cover:

LOGO
A Language for Learning

C= commodore
COMPUTER

---Interior:

The Commodore 64 Logo Tutorial

Written by
Virginia Carter Grammer,
E. Paul Goldenberg,
And Leigh Klotz, Jr.

Edited by
Mark Eckenwiler

Terrapin, Inc. gratefully acknowledges the writing and editing contributions to this
tutorial by

Marlene Kliman

mailto:mikeebean@hotmail.com

Nola Sheffer
Patrick G. Sobalvarro
Deborah G. Tatar

and especially
J. Sheridan McClees
Peter von Mertens

Designed by Donna Albano and Janet Mumford

Terrapin Logo mascots designed by Virginia Grammer

Logo was implemented on the Commodore 64 by Leigh Klotz, Jr., with assistance from
Andy Finkel of Commodore, John Cox, Patrick Sobalvarro, and Devon McCullough of
Terrapin. Logo was originally developed at Bolt, Beranek and Newman, Inc. and at the
Massachusetts Institute of Technology. The M.I.T. 6502 implementation was
accomplished by Stephen Hain, Patrick Sobalvarro, and Leigh Klotz, Jr. under the
direction of Professor Harold Abelson.

Copyright © 1982, 1983 Terrapin, Inc.
All Rights Reserved.

DISCLAIMER

COMMODORE ELECTRONICS LTD. ("COMMODORE") MAKES NO
WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
PROGRAM DESCRIBED HEREIN, ITS QUALITY, PERFORMANCE.
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE THIS
PROGRAM IS SOLD "AS IS". THE ENTIRE RISE AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAM PROVE
DEFECTIVE FOLLOWING ITS PURCHASE, THE BUYER (AND NOT THE
CREATOR OF THE PROGRAM, COMMODORE, THEIR DISTRIBUTORS OR
THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL ECESSARY
SERVICING, REPAIR OR CORRECTION AND ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES. IN NO EVENT WILL COMMODORE BE
LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF
IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED
WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY.

COPYRIGHT AND TRADEMARK NOTICES

The Logo software and sections of the Reference Guide are copyrighted by the
Massachusetts Institute of Technology. The Tutorial and changes to the Logo software
are copyrighted by Terrapin, Inc.

It is against the law to copy, photocopy, reproduce, translate, or reduce to any electronic
medium or any other medium, in whole or in part, the software and documentation
included in the Commodore Logo package, without prior written consent from Terrapin,
Inc.

Copyright, © Massachusetts Institute of Technology, 1981. Except for the rights and
materials reserved by others, the Publisher and Copyright owner hereby grant permission
without charge to domestic persons of the United States and Canada for use of this work
and related materials in the United States and Canada after 1995. For conditions of use
and permission to use materials contained herein or any part thereof for foreign
publications or publication in other than the English language, apply to the Copyright
owner or publisher. Publication pursuant to any permission shall contain an
acknowledgment of this copyright and an acknowledgment and disclaimer statement as
follows:

This material was prepared with the support of National Science Foundation Grant No.
SED-7919033. However, any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors and do not necessarily reflect the views of the
NSF.

Each school purchasing and putting into use Logo will make the program object code and
accompanying manuals and teaching guides, if any, available for inspection by the
parents or guardians of the children who will be using Logo in the school.

Copyright © Terrapin, Inc., 1982, 1983
380 Green Street
Cambridge, MA 02139
(617) 492-8816

Terrapin, the Terrapin logo, and the Terrapin mascots are trademarks of Terrapin, Inc.

All references to "Logo" herein refer to the Logo language, developed at the Mas-
sachusetts Institute of Technology.

We sincerely hope you enjoy using Commodore Logo. Here are several other
Commodore software packages which you should know about:

PILOT for the Commodore 64
This is the most powerful version of PILOT available. You can define your own
characters, create colorful, moveable objects called sprites, and create music and a variety
of sound effects. With PILOT, educators can write their own courseware to combine fun
and entertainment with learning. A RUN-ONLY version of PILOT is also included.

PET EMULATOR
With this program, you will be able to use software that had been designed for the
Commodore PET (2.0 BASIC version).

EASYLESSON and EASYQUIZ
These two programs let you easily create lessons and quizzes on topics of your own
choice. When you are establishing a pool of questions, you can classify each question in
one of seven categories that you define, such as Historical Dates, Famous Quotes, etc.
Each of these questions and answers can be "shuffled" before a quiz is given. The quiz
can be given on the screen in a "flash card" method or on a piece of paper as a multiple
choice or fill in the blank format.

PUBLIC DOMAIN SOFTWARE
The Public Domain software series consists of 27 pre-packaged sets of programs.
Altogether, there is a total of 340 educational programs. Subjects such as Business,
Computer Science, English, History, Math, Geography, and Technology are included for
various grade levels. Included also are challenging games in logic, math, Hi-Q, and
words.

INTRODUCTION TO BASIC: PART I
Intro to BASIC: Part I teaches you how to program in the BASIC language on your
Commodore 64. The manual gives you step by step instructions so that learning is fun
and easy.

GORTEK and the MICROCHIPS
This package teaches young people how to program in BASIC. The program theme is to
have you help Gortek teach the Microchips to program the computer in time to ward off
an attack from the powerful Zitrons.

SPEED/BINGO MATH (Elementary Grades)
This package features two learning games. Addition, subtraction, multiplication, and
division can be learned while having fun. SPEED MATH gives you a time limit to solve
a variety of math problems. BINGO MATH asks you to solve a math problem and then
use the answer to play bingo. The games can be played against the clock or opponents.

THE WORD MACHINE and THE NAME MACHINE
This is an easy-to-learn and easy-to-use word processing package. Perfect for letters,
address lists, memos, and notes, these programs let you overtype, insert, and delete text;
personalize form letters; and print in draft, formal, or informal formats.

EASY SCRIPT 64
This is a powerful word processor with table producing capabilities, comprehensive
printer controls, easy update facilities, easy document handling, the ability to interact
with EASY SPELL 64, and more.

EASY SPELL 64
Easy Spell 64 features the following: the automatic correction of spelling errors, the
ability to count the number of words in your manuscript and interact with Easy Script 64,
and a built-in 20,000 word dictionary that lets you add words not already stored there.

EASY MAIL 64
With Easy mail 64, you can easily manage your address files. Label printing is also
simplified with Easy Mail's ability to search for specific fields/categories. The program's
features or two include entry, change, or deletion of a file by name or number; the
capability capability, print labels; a HELP screen; and the ability to print a complete
printout of all the data in each of your records.

DISK BONUS PACK
CASSETTE BONUS PACK
As an introduction to your Commodore 64, both of these packages feature programming
aids, music and video demonstration programs, and several educational and personal
programs.

SUPER EXPANDER 64
This cartridge is a powerful extension of the BASIC language which gives you the
commands needed to easily access and implement Commodore's graphics, music, and
sound capabilities. You will be amazed at how quickly and easily you can plot points and
lines; draw arcs, circles, ellipses, rectangles, triangles, octagons; paint shapes with
specified colors; read game paddle and joystick locations; create music and sound;
display text; split screens to display both text and graphics; and program the function
keys.

EASY CALC 64
Easy Calc 64 is an easy-to-use electronic spread sheet which features editing functions
and HELP screens. With Easy Calc 64, you can also print bar charts and individually
formatted tables.

THE MANAGER
The Manager is a general data base for handling your files.

THE MUSIC MACHINE
This cartridge turns your Commodore 64 keyboard into a music synthesizer. You can
now utilize all of your computer's music-making capabilities, even if you don't know how
to program or play music.

MUSIC COMPOSER
This package teaches everything you need to play songs and create sound effects on the
computer. The manual also includes several sample songs for you to play.

THE COMMODORE 64 MACRO ASSEMBLER DEVELOPMENT SYSTEM
This package is designed for experienced Assembly language programmers. Everything
you need to create, assemble, load, and execute 6500 series Assembly language code is
included.

SCREEN EDITOR
The Screen Editor helps you design software by letting you create and edit your own
screens. This programming tool is for users with some computer experience.

Commodore is proud to announce an entire series of EASY FINANCE software
packages. The EASY FINANCE series is called "easy" because all of the programs are
simple to operate and require no programming experience. Here is a brief description of
each:

EASY FINANCE I - LOANS
LOANS shows you how to make the most out of your hard-earned money by calculating
12 different loan concepts for you. Principal, regular payment, last payment, and
remaining balance are just some of the functions EASY FINANCE I can determine.

EASY FINANCE II - INVESTMENTS
INVESTMENTS helps you make the right financial decisions by showing you how to
make the most out of 16 investment concepts. Functions such as future investment value,
initial investment, and internal rate of return can be calculated.

EASY FINANCE III - ADVANCED INVESTMENTS
ADVANCED INVESTMENTS is an advanced version of EASY FINANCE II. It shows
you how to make the most out of 16 more investment concepts. Financial terms are
clarified and functions such as discount commercial paper, financial management rate of
return, and financial leverage and earnings per share are included.

EASY FINANCE IV - BUSINESS MANAGEMENT
This is a business management package that shows managers how to make the right
decisions about production, inventory, control, compensation, and much more. Lease
purchase analysis, depreciation switch, and optimal order quantity are some of the 21
functions this program can
calculate for you.

EASY FINANCE V - STATISTICS
STATISTICS shows you how to make the most out of statistics. This includes payoff
matrix analysis, regression analysis forecasting, and apportionment by ratios.

Please contact your local Commodore dealer for additional information on other software
available for your Commodore computer.

Thank you for owning a Commodore computer. Now that you are a member of the
Commodore family, maybe you'd like to expand your computer's family. Here is a list of
additional hardware which is compatible with your Commodore
computer:

1525 Printer
This printer is an 80 column, dot-matrix, impact printer for creating printouts and hard-
copies from your VIC 20 or Commodore 64. The printer features 30 characters per
second print speed and prints graphics and text characters.

1526 Printer
This bi-directional, 80 column, dot-matrix, impact printer is excellent for creating
printouts and hardcopies from your computer. The printer features programmable line
spacing and a print format interpreter.

1520 Plotter/Printer
This is a four color, high resolution plotter that connects directly to your VIC 20 or
Commodore 64 computer. With the 1520 Plotter/Printer you can plot on paper the same
unique color graphics that you can create on your screen using Logo graphics!

Commodore Piano Keyboard and DIGI-DRUM(™)
These exciting accessories for your Commodore 64 add musical flair to your talents. Both
of these computerized instruments are excellent for composing, playing or learning music
The Piano Keyboard comes complete with the software needed to turn your computer
into a music synthesizer. DIGI-DRUM is an inexpnsive 3-pad electronic drum which
creates three types of authentic percussion sounds. Both the Piano Keyboard and DIGI-
DRUM may be used with a television set, monitor, or your own audio system.

Commodore Speech Module
The speech module cartridge comes with a built-in vocabulary of 234 words which are
easily programmed into sentences. The module "talks" in a pleasant female or male voice.
It can generate other types of voices with special vocabularies geared to each software
package. The speech module works with disk, tape, and also has a slot for accepting plug-
in cartridges.

1701 Monitor
This full color monitor is compatible with the VIC 20, Commodore 64, and other
computers. The 1701 Monitor features high quality and resolution video and a built-in
speaker with audio amplifier.

1530 Datasette
The 1530 Datasette is a low cost, highly reliable way to store and retrieve programs and
data. It features keys for Play, Record, Fast-Forward, Rewind, and Stop. The 1530
Datasette uses standard audio cassette tapes and allows naming of programs and files,
verification of programs, and programmable end of tape marker sensing.

 Joystick and Paddles
Controls for games and entertainment.

1600 Modem
This telephone interface lets you communicate with other computer systems over your
telephone line! The modem package includes cassette-tape terminal software, a free
password and one-hour subscription to the CompuServe System(™) and software
controls for duplex, baud rate, and parity. There is also an optional adapter for non-
modular phones.

1650 Automatic Modem
This telephone interface features automatic answer and automatic dial. The modem
package lets you communicate with other computer systems over the phone lines! It
includes cassettetape terminal with software, a free password and one-hour subscription
to the CompuServe System(™) and software controls for duplex, baud rate, and parity.
You need a modular phone or adaptor to use this product.

PET 64
This unique machine combines the many features of the Commodore 64 with the
capabilities of the Commodore PET. However, sprites, color and sound are not featured
on this machine. The majority of other Logo commands will be compatible.

SX100/DX1100 Portable Color Computers
These new additions to the Commodore family of computers give you the many features
of the Commodore 64 only now in a convenient portable style. The model SX100 (single
disk drive) and DX100 (double disk drive) are excellent investments for executive
business people as well as affordable for today's students. Your Logo program will be
compatible with these computers.

CONTENTS

BEGINNING LOGO

Your Commodore Logo Package B-1
This Tutorial B-1

Overview: What Can You Do With Logo? B-2
Graphics B-3
Words and Lists B-4
Computation B-4

Starting Your Commodore 64 B-4
Preparing a Blank Disk For Use B-5
Starting Logo B-6
When Logo Has Started Up B-7
Recovery Process B-8
Upper and Lower Case and Graphics Characters:

The Commodore Key B-10
Starting Logo: Summary B-11

GRAPHICS

Graphics Mode G-1
Driving the Turtle: FORWARD (FD), BACK (BK),

RIGHT (RT), LEFT (LT) G-2
Let Logo Do Your Arithmetic G-4
An Easy Way to Repeat Yourself: <CTRL> P, Up Arrow G-4
The Screen: DRAW, NODRAW (ND), TEXTSCREEN

(Function Key <fl>), SPLITSCREEN (Function
Key <f3>), FULLSCREEN (Function Key <f5>) G-5

Turtle-driving Projects G-6
Color: PENCOLOR (PC), BACKGROUND (BG),

SINGLECOLOR, and DOUBLECOLOR G-7
The Magic of PENERASE (PENCOLOR -1): Erasing G-8

Introduction to Procedure Writing G-9
Primitives vs. Procedures G-9
Naming a Procedure G-10
Writing a Procedure: EDIT Mode: TO, END,

<CTRL> C, RUN Key, <CTRL> G G-11
Running a Procedure G-15

Commodore 64 Logo Tutorial vii

Contents

Planning and Drawing Your Favorite Square G-16

Projects: Simple Procedures G-18
What goes Into a Procedure G-19
More Primitives: REPEAT, CLEARSCREEN (CS),

HOME, PENUP (PU), PENDOWN (PD) G-19
Procedure Projects G-21

Saving Procedures: CATALOG, SAVE, POTS G-21
Clearing the Workspace, Reloading Procedures:

READ, GOODBYE, ERASE (ER), ERASE ALL,
ERASEFILE G-23

Saving, Reading and Erasing Pictures: SAVEPICT,
READPICT, ERASEPICT G-25

The Invisible Turtle: HIDETURTLE (HT),
SHOWTURTLE (ST) G-26

Changing the Textscreen Color: TEXTCOLOR, TEXTBG G-26
Putting Letters on the Graphics Screen: STAMPCHAR G-27

Summary of Logo Commands Used So Far G-28

More About the Editor: <CTRL> P, <CTRL> N,
<CTRL> 0, <CTRL> A, <CTRL> L, <CTRL> D,
<CTRL> K, Arrow Keys G-30

Summary of Editing Commands G-31
Projects Using Shapes G-31
Listing a Procedure: PRINTOUT (PO), <CTRL> W G-32
Summary of Listing Commands G-33
Heading: A Matter of State G-33
Copying a Procedure G-34
A Magic Number G-34
Projects: More Shapes G-35

Introduction to Variables: Procedures That Take Inputs G-36
Projects: Sizable Shapes G-39
From SQUARE to POLY G-40
Projects: Regular Polygons G-41
Another View of POLY G-41
Circles G-42
Projects: Curves G-43
Using Subprocedures G-43

viii Commodore 64 Logo Tutorial

Contents

Non-stop Procedures: Introduction to Recursion G-45
Projects: Simple Recursion G-46
Recursion: Changing the Input WRAP, NOWRAP G-46
Projects: Changing Inputs G-48
Stopping With Style: IF-THEN, STOP G-48
Projects: Testing and Stopping G-51
Using the Full Power of Recursion G-51
Recursion Projects G-54

Special Effects and New Utilities G-55
RANDOM Numbers, Numbers from Arithmetic

Operations, Inputs, Outputs G-55
Projects Using Random G-57
Debugging by Printing Values: PRINT (PR) G-57
Debugging Using PAUSE: <CTRL> Z,

CONTINUE (CO) G-59
Negative Inputs G-59
More on Debugging: TRACE, NOTRACE G-61
Commenting Your Program: ; G-61
More About the Turtle: DRAWSTATE, HEADING,

SETHEADING (SETH), TOWARDS G-62
Position When You Want It: XCOR, YCOR,

SETX, SETY, SETXY G-63

INSTANT: Logo Turtle Graphics for the Non-reader G-64

COMPUTATION: HANDLING NUMBERS

Arithmetic Operations C-1
Hierarchy of Operations C-1
Outputs, Integer Operators, Functions: RANDOM,

RANDOMIZE, ROUND, INTEGER, QUOTIENT,
REMAINDER, SQRT, SIN, COS C-3

Variables, Global and Local: MAKE, LOCAL C-5
Procedures: TO, END C-6
Interactive Procedures: LOCAL, REQUEST C-7
Bringing Values Out of Procedures: OUTPUT (OP) C-10
Example of OUTPUT and Recursion:

A Procedure to Do Exponentiation C-12
Graphing Functions: Sine, Cosine, Tangent,

Parabola, Ellipse, SETXY, HOME, DRAW, HT C-15

Commodore 64 Logo Tutorial ix

Contents

WORDS AND LISTS

INTRODUCTION W&L-1
Interactive Graphics: READCHARACTER (RC),

TOPLEVEL, STOP W&L-3
Projects with RC: Extending QUICKDRAW W&L-6
Changing the Value of a Variable:

MAKE, PRINT (PR) W&L-7
Projects with MAKE: More Extensions

to QUICKDRAW W&L-12
Interactive Programs without Waiting: RC? W&L-13
Projects with RC, RC?: Extensions to LOOP W&L-16

INTERACTIVE LANGUAGE W&L-17
Don't Skip This Section: MEMBER?, EMPTY? W&L-17
Some Friendly Introductions: SENTENCE (SE),

REQUEST, LPUT, FPUT W&L-18
Interlude: Clearing the Text Screen

with CLEARTEXT W&L-23
Objects: Producing RESULTs as Output,

and Using Them as Input W&L-23
Writing Procedures that Create and Output Objects:

OUTPUT W&L-26
Making One Procedure's Output into Another

Procedure's Input: OUTPUT (OP), FIRST,
BUTFIRST (BF), LAST, BUTLAST (BL),
SENTENCE (SE), WORD W&L-31

Subprocedures for Cleaner Programming W&L-34
A Generalization Using Recursion: ITEM W&L-35
Projects Using ITEM and Recursion W&L-38

DEFINITIONS AND MODELS W&L-39
Some Important Primitives Used in this Chapter W&L-39
Definitions of Words and Lists: CHAR W&L-42
Programming: Some Metaphors and Some Review W&L-45
Some Details of Programming in Logo:

Variables, Passing Objects, Logo's Way of
Understanding Commands, and Logo's
Messages When It Doesn't Understand W&L-46

How Logo Interprets a Command W&L-51
Using Logo Predicates and Creating New Ones:

LIST?, WORD?, MEMBER?, and the
Structure of IF, THEN, and ELSE W&L-54

x Commodore 64 Logo Tutorial

Contents

Projects with Predicates W&L-57
Ordered Rules W&L-57
Projects with PLURAL W&L-59

Quiz Programs: More About REQUEST (RQ) W&L-61
Projects with REQUEST W&L-63
Composing Logo Objects: SENTENCE (SE),

WORD, LIST, FPUT, LPUT, TEST,
IFTRUE (IFT), and IFFALSE (IFF) W&L-65

An Application of LPUT in Interactive Graphics:
RUN W&L-71

Using the History List: Applying a Command
(RUN) to Each Element of a List W&L-73

Projects with History Lists W&L-75
Substituting One Word for Another in a Sentence:

A Procedure with Two Recursive Calls W&L-75
Projects with Mad-Libs W&L-79

Understanding Language: Searching for Key Words
and Matching Sentences to Templates:
ALLOF, ANYOF W&L-80

Projects with Language Understanding W&L-86

SPRITES

Introduction S-1
Getting Ready to Use Sprites S-1
Talking to Sprites: TELL S-1
A Program Using TELL S-2
Which Sprite: WHO S-4
Sprites and the Graphics Screen: TB? S-5
Sprite Shapes S-6
Changing Sprite Size: BIGX, BIGY, SMALLX, SMALLY S-7
Changing Sprite Shapes: SETSHAPE S-8
Identifying the Shape of the Current Sprite: SHAPE S-9
The Sprite Editor: EDSH S-10
Moving Around and Drawing in the Sprite Editor S-11
Summary of Sprite Editor Commands S-13
Saving Shapes S-14
Shape Numbers of the Built-In Shape Files S-14

Demonstration Programs S-15

Commodore 64 Logo Tutorial xi

Contents

DINOSAURS S-15
SUBMARINE S-17
RUNNER S-19
Suggestions for Ambitious Programmers S-21

MUSIC

Preparation: READ M-1
Duration M-2
Pitch M-4
Procedures M-5
Envelope M-8
The SOUND Procedure M-9

APPENDIX

ERROR MESSAGES A-1
Part I A-1
Part II A-4

EDIT MODE A-11
Use of Control Characters and Cursor Keys

for Ease in Editing A-11
Moving the Cursor A-11
Moving the Text A-12
Deleting Text A-12
Leaving EDIT Mode A-13

GRAPHICS CHAPTER PROJECTS A-14
Turtle-driving Projects A-14
Procedure Projects A-16
Projects Using Shapes A-19
Projects: More Shapes A-30
Projects: Sizable Shapes A-32
Projects with Regular Polygons Projects: Curves A-36
Projects: Simple Recursion A-38
Projects: Changing Inputs A-39
Projects: Testing and Stopping A-43

Recursion Projects A-45
Projects Using Random A-53

xii Commodore 64 Logo Tutorial

Contents

Mascots: Elephant, Rabbit, Snail A-55
Procedures for Saving Pictures A-58
Developing an Arc Procedure A-60

STRATEGIES FOR THE WORDS AND LISTS PROJECTS A-63

THE COMMODORE LOGO UTILITIES DISK A-88
How to Make a Backup Copy of the Utilities Disk A-88
Summary of Utilities Disk Files A-90
Explanation of Utilities Disk Files A-94
ARCS: Variable Radius Arc and Circle Procedures A-94
B&W: Resets the Color for a Black & White TV A-95
BASE: For Converting from One Base to Another A-95
CCHANGE, CCHANGE.BIN, CCHANGE.SRC:

Changing Colors on the Graphics Screen A-96
COLORS: Variable Names for Colors A-96
FOR: A FOR-NEXT Loop A-97
INSTANT: Single Letter Logo Commands A-97
JOY: For Drawing with the Joystick A-97
LOG: Procedures for Logarithms and Exponents A-97
PLOTTER: Controlling the Commodore 4-Color Plotter A-98
PRINTPICT: Hardcopy Printing of Saved Pictures A-98
STAMPER: Printing Text on the Graphics Screen A-99
STAMPFD: Printing Strings of Characters

on the Graphics Screen A-99
TEACH: How to Write Logo Procedures

Without Using the Editor A-100
TEXTEDIT: How to Read, Examine, and Print Text Files A-101
WHILE: Procedures for WHILE and UNTIL Commands A-104

ADVENTURE: An Adventure Game A-104
ANIMAL: The Game that Teaches

the Computer About Animals A-104
ANIMAL. INSPECTOR: What's in the

ANIMAL Knowledge Base? A-105
DYNATRACK: A Game: the Dynamic Turtle

on a Frictionless Surface A-106

GRAMMAR: A Random Sentence Generator A-106
INSPI: Sample Logo Picture A-107
PIG: A Piglatin Program A-108
SNOW: A Recursive Snowflake Drawing A-108
TET: A Graphics Procedure of Variable Complexity A-109

Commodore 64 Logo Tutorial xiii

Contents

ADDRESSES, AMODES, ASSEMBLER, OPCODES:
Interfacing Logo and the Assembler A-109

SPRITES, SPRED, ANIMALS, ASSORTED, RUNNER,
SHAPES, VEHICLES, DINOSAURS, SUBMARINE,
SPRITEDEMOS, VELOCITY A-110

MUSIC, SOUND, TWINKLE A-110

COMMODORE 64 LOGO REFERENCE GUIDE

USE OF THE LOGO SYSTEM A-111
Modes of Using the Screen A-111
Nodraw Mode A-111
Edit Mode A-111
Draw Mode A-112
Editing A-113
Line Editor A-113
Screen Editor A-114
Using Commodore Peripherals A-116
Printing Procedures on a Printer A-116
Color Control A-118
Color Modes A-119
The Logo File System A-119
Disk Files A-119
Saving Pictures A-120

MISCELLANEOUS INFORMATION A-122
Self Starting Files A-122
INST Key: Printing Non-Standard

and Reverse Characters A-123
Various System Parameters A-123
Memory Organization Chart A-125

ASSEMBLY LANGUAGE INTERFACES TO LOGO A-126
.EXAMINE and .DEPOSIT A-126

Writing Your Own Machine-Language Routines A-127
The Logo Assembler A-128
Syntax of Input to the Assembler A-129
Saving Assembled Routines on Disk A-131
Example: Changing Colors A-131
Useful Memory Addresses A-131

xiv Commodore 64 Logo Tutorial

Contents

LOGO SYSTEM PRIMITIVES GLOSSARY

Graphics Commands A-139
Numeric Operations A-143
Word and List Operations A-145
Defining and Editing Procedures A-148
Naming A-149
Conditionals A-150
Control A-151
Input and Output A-152
Filing and Managing Workspace A-154
Debugging A-157
Miscellaneous Commands A-158
The .OPTION Primitive A-159

INDEX

Commodore 64 Logo Tutorial xv

B - BEGINNING LOGO

Your Commodore Logo Package

NOTE:
This section should be read the first time you use your Logo package. If you have used
Commodore Logo before, or have a resource person or teacher helping you, skip to the
next section, titled This Tutorial.

In your Commodore Logo package, you will find:

1 Logo Language disk

1 Utilities Disk containing demonstration and utility programs
1 Commodore Logo Tutorial, which you are now reading, including an

Appendix with technical information

In order to use Logo, you will also need a Commodore 64 with a VIC-1541 disk drive.
To save your work, you will need a blank disk.

Instructions for copying and using the Utilities Disk are in the Appendix. You will need a
second blank disk to make a copy of the Utilities Disk.

NOTE: It is possible to run Logo without a disk in the disk drive, but you would not be
able to save your work. So we encourage you to prepare a blank disk for storing the
procedures you will be writing, as described later in this chapter.

This Tutorial

This tutorial will teach you how to use Logo. The Appendix has several sections. There
are explanations of error messages; descriptions of the files on the Utilities disk;
documentation on the edit mode of Logo; suggested answers to projects in the Tutorial;
and information about the internal workings of Logo. The Glossary contains descriptions
of Logo primitives with explanations of what they do. You need not read the Appendix
and Glossary to start using Logo, but you will find it useful as a reference tool when you
want to continue.

Throughout this tutorial, there are projects. Suggested answers to these projects are in the
Appendix. REMEMBER that there are many ways to solve a problem and just because
your method is different from ours does not mean it is wrong.

Other books you may wish to read include MINDSTORMS: Children, Computers, and
Powerful Ideas, by Seymour Papert; TURTLE GEOMETRY, by Harold Abelson and
Andrea diSessa, which is awaiting the day that you think you have done all there is to do
in Logo; SPECIAL TECHNOLOGY FOR SPECIAL CHILDREN,

Commodore 64 Logo Tutorial B-1

Beginning Logo

by E. Paul Goldenberg, which describes uses in several special needs environments;
LEARNING WITH LOGO by Daniel Watt, for more ideas of what to do with Logo,
particularly in the classroom ... a must for teachers and kids; THE TURTLE
SOURCEBOOK by Donna Bearden and Jim Muller (Young People's Logo Assoc., Inc.)
and Kathleen Martin, Ph.D (U. of Dallas) is filled with examples, worksheets and
suggestions on using and enjoying Logo ... another good book for the classroom.

Also, look forward to the following books specifically for Logo on the Commodore
64: LOGO PRIMER, by Gary G. Bitter and Nancy Watson (Reston Publishing Co.).
The Logo Primer provides applications for elementary school students.

Once you are comfortable with your Commodore 64, use this tutorial to learn the basics
of programming in Logo. Type in the examples and problems. Think about what you are
doing; expect to go over some sections more than once.

Logo puts the user in control from the start. In keeping with that philosophy, this tutorial
will suggest but not dictate. If you are ever really stuck for an idea, see the Appendix. It
contains examples of all the ideas suggested. In fact, after you try things on your own,
look through the Appendix for new ideas and tips
and tricks.

{Elephant, Rabbit, and Snail Graphics. Will be substituted with Egr, Rgr, and Sgr in
brackets for remainder of document.}

In this tutorial, you will meet three Logo mascots, all drawn with Logo. The elephant
marks things to remember. The rabbit points out neat tricks, short cuts, and quicker ways
of doing things. Go slow and be careful when you see the snail. It calls attention to
warnings and possible problems. The procedures that draw the mascots are listed in the
Appendix.

We have also put some information between big bold bands {changed to –‘s for this
document} and shifted them to the right of the page. It is not necessary to read this
information your first time through the tutorial, but you will find it helpful when you
return and want further explanations of specific sections.

Overview: What can you do with Logo?

Logo is a procedural language. Each procedure is a group of one or more instructions
which the computer can store for reuse. These instructions can be either Logo commands
(primitives), which are built into the language, or procedure names, which you define.
When you have written a procedure to do a task, you can use it in any other procedure
you write, without having to rewrite its instructions in that procedure, or having to chain
to it, or link it.

B-2 Commodore 64 Logo Tutorial

Beginning Logo

You build a system of procedures the way you build your own knowledge base, new
procedures and knowledge using and building on what is already in existence. This leads

to clearer, more structured programming and thinking, in contrast to the development of
one long, complicated procedure (program) which is common in some other languages.

Logo is what is known as an interpretive language. Logo commands produce immediate
results. Logo can either execute a command immediately (called IMMEDIATE Mode) or
you can use commands in procedures which can be stored and used as often as you want.
Changing or correcting (editing) a procedure is simple in Logo.

If you are familiar with other languages, you will be delighted with the lack of distinction
between system commands, Logo primitives, and your own procedures. This is perhaps
the most unusual aspect of Logo, and one of the most powerful, from the user's
standpoint. Any command you can type to Logo can be used within a Logo procedure.
Logo procedures can even be written to edit themselves, or other procedures.

You can begin to use all of the different types of commands immediately. As you
advance in your programming skills, you will gradually discover the vast possibilities this
opens to you.

Graphics

Logo graphics allows you to draw lines and turn in any direction. With its simple
commands you may create figures and drawings of great complexity. In Logo, you do not
have the tedious task of figuring point to point co-ordinates, although Logo can tell you
the co-ordinates at any position.

Commodore 64 Logo also offers the best available graphics and sprite capabilities, giving
you control of up to eight independently-controlled sprites.

Graphics is first in this tutorial because you need no experience to be able to use it. Pre-
schoolers, using the single-letter commands in the INSTANT system, can do Logo
graphics. At the other end of the intellectual spectrum, Professors Harold Abelson and
Andrea diSessa, at M.I.T., use Logo graphics to develop concepts in higher mathematics
and physics in their book Turtle Geometry: The Computer as a Medium for Exploring
Mathematics.

Commodore 64 Logo Tutorial B-3

Beginning Logo

Words and Lists

Logo's facility with words and lists makes it ideal for writing conversational programs,
quizzes, pig-Latin translators, programs that teach, and even programs that learn: in short,
all programs that need to manipulate lists of information.

Logo's unique list-processing capabilities give you power over words which is impossible
to match in non-list-processing languages such as BASIC, FORTRAN, and PASCAL.

Computation

In addition to the ordinary mathematical computations all languages can handle, Logo's
built-in ability to do recursion, which allows a procedure to use itself as a subprocedure,
makes it easy to do computations not possible in languages such as BASIC and
FORTRAN. You will meet recursion in each of the areas of Logo described in this
overview. For a description of mathematical computation, see the chapter titled
Computation: Handling Numbers.

Starting Your Commodore 64

The following assumes that the Commodore is already hooked up, and only needs to be
turned on. If this is not true, please read the Commodore 64 User's Guide and the VIC
1540 or VIC 1541 User's Manual for directions on connecting the computer, disk drive,
and TV together.

Do NOT put a disk in the disk drive before everything is turned on or the disk could be
damaged. To start your Commodore 64, (1) turn on the disk drive (the switch is on the
right side of the back panel) and also turn on the TV screen or monitor. (2) Turn on the
Commodore 64. REMEMBER, only turn on the computer after the connected equipment
is turned on.

There should be the Commodore heading at the top of the screen and the word READY,
with a blinking cursor below it.

NOTE: It is possible to run Logo without a disk in the disk drive, but you would not be
able to save your work. Therefore, we encourage you to prepare a blank disk for storing
the procedures you will be writing. If you already know how to format a blank disk, skip
to the next section on starting Logo.

B-4 Commodore 64 Logo Tutorial

Beginning Logo

Preparing a Blank Disk for Use

A blank disk, unlike an audio cassette tape, must be prepared before it can store
information. This process is called formatting the disk.

To format a disk on the Commodore 64:

1. Insert the blank disk you want to format into the disk drive. The disk should be
inserted with the label facing up and towards you. (If there is no label, compare with the
Logo disks to see where the label should be placed.)

2: Push the disk into the disk drive far enough that it does not pop back out again. Then
push down on the disk drive door until it clicks shut. (To open the door, push in and then
up.)

3. Type

OPEN 15,8,15

and press the <RETURN> key.

4. Next, type

PRINT#15,"N0:MY DISK,45"

and press <RETURN>.

You can use any phrase in place of MY DISK as the disk name or header (as long as it
does not exceed 16 characters) and any two digit number where the 45 is. The disk drive
will whir for a little over a minute, then the Commodore prompt READY will appear on
the screen and the light will go out on the disk drive.

5. Remove this disk from the disk drive, label it with a felt tip marker immediately, and
use it to store your Logo procedures. We will refer to it again in the section When Logo
Has Started Up.

More information about inserting and initializing disks is in the Commodore VIC-1541
floppy disk manual (page 8 for insertion of diskette, page 15 for initialization). See the
OPEN and NEW commands on the page referred to in your manual for initialization.
BASIC programs and Logo procedures can be stored on the same disk.

Commodore 64 Logo Tutorial B-5

Beginning Logo

You can initialize disks while running Logo. Type the following command:

DOS [N0:MY DISK,23]

for the same result as the BASIC sequence above.

Starting Logo

KEYBOARD DIAGRAM

{Drawing of Commodore 64 Keyboard}

One of the disks packaged with your system is called the Language Disk. It is the disk
with the Logo interpreter on it. The other disk, labeled Utilities Disk, contains some
demonstration and utility programs. They are mentioned where appropriate in the tutorial
and summarized and cross-referenced in the Appendix.

Follow the steps below to start Logo.

(1) The TV's screen should display the word READY with a blinking cursor below it.
What else is on the screen depends on what you have done before this point. (2) Place the
Language Disk in your disk drive with the label facing up and towards you. (3) Close the
disk drive door firmly. If you are not sure how to start the computer and insert a disk, see
the Commodore VIC-1541 floppy disk manual, particularly the sections about "powering
on" and "insertion of diskette."

Next, type

LOAD "LOGO",8

B-6 Commodore 64 Logo Tutorial

Beginning Logo

and press <RETURN>. The disk drive light will go on and the Commodore will print

SEARCHING FOR LOGO
LOADING
READY

If this message does not appear, check to be sure that you are using the Language disk
and that the disk drive door is firmly closed. Then type,

RUN

and press <RETURN>. The screen will clear and

Loading, please wait ...

will appear. It takes a couple of minutes to load and start Logo. When it has started, Logo
will print this brief message:

COMMODORE LOGO

COPYRIGHT (C) 1982,1983 TERRAPIN, INC.
COPYRIGHT (C) 1981 MIT

WELCOME TO LOGO!
?

{Sgr}
If Logo does not start up after about two minutes, your language disk may be damaged in
some way, or your disk drive may be damaged. Check to see if you are using the correct
disk and the drive door is properly closed. If other disks work on your disk drive, the
problem is most likely with the diskette.

When Logo Has Started Up

Logo will print its WELCOME message and a ? when it is ready for you. The ? is called
a prompt, prompting you to respond with a Logo command. The flashing box is called
the cursor. It shows you where the next character you type will appear. Whenever the
cursor is flashing, Logo is waiting for you to type something.

{Sgr}
(This would be a good time to remove the Logo Language disk from the disk drive, put it
in a safe place, and replace it with the blank disk you have initialized and will be using to
store your Logo procedures.)

Commodore 64 Logo Tutorial B-7

Beginning Logo

{Egr}
You give Logo directions by typing commands at the Commodore keyboard.
Logo reads what you have typed when you press the <RETURN> key. Pressing
<RETURN> is like saying DO IT. Nothing will happen until you hit <RETURN>.

{Egr}
NOTE ON POINTED BRACKETS:
When you see pointed brackets < > around a word, press the key on the keyboard with
that word on it. Do not spell out the word. When you see
<CTRL> C, hold down the <CTRL> key and type the letter C. (Think of the <CTRL>
key as a different kind of <SHIFT> key.)

{Rgr}
SPECIAL NOTE
Nothing you type can harm the computer or Logo. Even the worst that can happen is not
too bad. You might find a bug while using Logo which may take you out of Logo and
mean the loss of work you have not yet stored, but it will not harm Logo or the computer.
This is very very unlikely, so do not be afraid to try things.

RECOVERY PROCESS

The method used to restart Logo without reloading it from the disk is to hold down the
<RUN/STOP> key and hit the <RESTORE> key. This should bring the heading
COMMODORE LOGO back onto the screen. If this does not happen, you will have to
turn off the machine and start again. Sometimes in using the disk drive or the printer,
there is a problem. For the disk drive, try typing DOS[I] and hit <RETURN>. If this does
not work, you could try turning off the disk drive and turning it back on again. Beware
though that there is a slight chance that this could hurt your computer. The same applies
for the printer.

-
When Logo does not understand something typed, it will try to help you by typing out a
message. Most of the time you will have no trouble figuring out what is wrong, but when
you do, turn to the list of Error Messages and their explanations (with examples) in the
Appendix.
-

Once in a great while Logo confesses (rightly or wrongly) to a bug and types out explicit
messages and recovery instructions. Logo will say something like TYPE R OR C. Type C
to Continue with what you were doing before the bug appeared. If you want to erase
everything and start over, type R (for Restart). Typing R is like giving Logo the
GOODBYE command.

B-8 Commodore 64 Logo Tutorial

Beginning Logo

USE THE EDITING KEYS TO CORRECT TYPING ERRORS:

The key erases the character to the left of the cursor and moves the cursor and
following text one space to the left. The left and right arrow keys move the cursor in the
same direction that they point on the keyboard. A left arrow key is in the upper left hand
of the keyboard, and a key marked <CRSR> in the lower right hand corner has both a left
and a right arrow depending on whether the <SHIFT> key is used. (If you hold down the

 or the <CRSR> arrow keys, they will automatically repeat.) Any letter, number,
or symbol that you type will appear exactly where the cursor is blinking, even if you have
used the arrow keys to move the cursor back into the text. The letters under and after the
cursor will move to the right to make room for what is inserted.

Type

MARY HAD A LITTLE LAMB

Use the key to erase the last character. Try it a few times. Move the cursor back
several letters using the left-arrow key. Notice that this does not erase the letters it travels
over. Change the line to read:

GARY HAD A LITTLE LAMB
GARY HAD A LITTLE HAM
GERTA HAD A LITTLE HAM SOUP
GERTA HAD XVP26 A LITTLE HAM SOUP

Finally, change it back to

MARY HAD A LITTLE LAMB.

See how typing characters in the middle of the line makes the rest of the line move over
to make room? You can never accidentally type on top of other characters and cause
them to be erased.

{Egr}
Press <RETURN> now. Logo will try to understand the whole line as a series of
commands. Since the words MARY HAD A LITTLE LAMB are not Logo commands,
Logo will tell you so. Type MARY again. Tell Logo to ignore what is typed with
<CTRL> G (before you press <RETURN>). To do this, hold down the <CTRL> key and
press the <G> key. (Remember, the <CTRL> key is like a special <SHIFT> key which is
always used with another key.) Logo will print STOPPED! and a new prompt. Typing
<CTRL> G is the usual way to stop Logo, whatever it is doing.

Commodore 64 Logo Tutorial B-9

Beginning Logo

Upper and Lower Case and Graphics Characters: The Commodore Key

The Commodore 64 has two modes: upper case/ graphics and lower/upper case mode.
The default setting is for upper case/graphics mode in which upper case letters will
normally be displayed when you type. If the <SHIFT> key is used, the graphics symbols

on the right front side of the keys are printed instead of upper case letters. For example, if
you press <SHIFT> Q, a solid ball is displayed.

{C= logo}
To switch to lower case/upper case, press the <COMMODORE> key and the <SHIFT>
key. Now, all letters will be lower case except, when you type a letter while holding
down the <SHIFT> key, an upper case letter will be displayed.

To get back to the original mode, just hold down the <COMMODORE> key and the
<SHIFT> key again. While you are in lower case/upper case mode, holding down the
<COMMODORE> key and typing any other key will print the graphic symbol on the left
front side of the key.

Note: When in upper case/graphics mode, Logo will recognize commands only in upper
case. Also, when in lower/upper case mode, Logo will recognize commands only in
lower case. This applies only to the built-in Logo commands, also known as primitives.

Procedure and variable names may use both upper and lower case or upper case and
graphics symbols. We recommend that you leave your computer in upper case/graphics
mode while using this manual.

{Sgr}
CAUTION:
At any time, you can exit Logo by turning the machine off, however, by doing so, you
will lose all your work unless you have saved it on the disk. Use <CTRL> G to stop
programs.

B-10 Commodore 64 Logo Tutorial

Beginning Logo

-
STARTING LOGO: SUMMARY

1. Turn on the drive and the Commodore 64.
2. Place Language Disk in disk drive
3. Type LOAD "LOGO",8 and hit <RETURN>.
4. Type RUN and wait approximately 90 seconds while Logo is loaded.
5. After WELCOME TO LOGO is printed, remove the Language Disk and insert your
storage disk
6. You are ready to proceed with Logo
-

Commodore 64 Logo Tutorial B-11

G - GRAPHICS

-
Since this tutorial is written for our reading constituency, we have placed the section
describing INSTANT for non-reading users at the end of the Graphics chapter.
-

Logo puts the user in control from the start. In keeping with that philosophy, this tutorial
will suggest but not dictate. If you are ever really stuck for an idea, see the Procedures
section of the Appendix. It contains examples of all the ideas suggested. In fact, after you
try things on your own, look through the Appendix for new ideas and tips and tricks.

Graphics Mode

Enter the graphics or DRAW mode by typing DRAW:

DRAW

and press the <RETURN> key. (Remember, pointed brackets around a word refer to a
key, not a word to be typed.)

A drastic change occurs on the screen; the command you have just typed and all other
commands will disappear. A small triangle will appear in the middle of the screen, and
the prompt will be in the lower left region of the screen.

Logo is now in DRAW mode. The bottom five lines of the screen are reserved for
commands you will type and the rest of the screen is drawing space.

{Graphic of screen, further refered to as Scgr}
Splitscreen and Turtle

The small triangle in the middle of your screen is called the turtle. When it first appears,
it is pointing upward. The back of the turtle has a thicker line than the other two sides so
you can tell where it is heading.

Commodore 64 Logo Tutorial G-1

Graphics

Driving the Turtle: FORWARD (FD), BACK (BK), RIGHT (RT), LEFT (LT)

You move the turtle with turtle commands. The turtle can leave a trail (draw a line) as it
moves, allowing you to produce a picture.

{Sgr}

FORWARD always moves the turtle in the direction it is pointed. Type

FORWARD 100 <RETURN>

or the short equivalent

FD 100 <RETURN>

{Egr}
The turtle will move forward one hundred turtle steps. The space between the command
and the number is necessary. If it is omitted, Logo will assume the whole thing to be a
procedure name. (Try FD100 without the space.)

If you leave out the number that FORWARD is expecting, or the space, or do something
else that Logo does not recognize, Logo will try to help you by printing an error message.
These are usually self-explanatory, but if you cannot figure out what is wrong, turn to the
Appendix where error messages are explained with examples.

To make the turtle turn, type the direction of the turn and the number of degrees:

RIGHT 90 <RETURN> or RT 90 <RETURN>

G-2 Commodore 64 Logo Tutorial

Graphics

{Sgr}

You told the turtle to turn right 90 degrees (a quarter of a circle). If you type RIGHT 90
again, the turtle will point straight down.

Type

LEFT 90 <RETURN> or LT 90 <RETURN>

From now on, we'll assume you know to press the <RETURN> key after a command.

The turtle will turn in place, 90 degrees to its left. Try moving the turtle around yourself.
Type BACK (or BK) with a number of steps.

{Rgr}
To clear the screen and start over, type DRAW. DRAW erases whatever picture is on the
screen and takes the turtle to its starting position. Use DRAW whenever you want to start
a new picture. (Please don't worry. We will discuss how to save pictures later on in this
manual.)

Play with the turtle some more.
(1) Try some odd distances and turns, such as

FD 87
RT 43
FD 26
LT 141
FD 59

(2) Draw a square
(3) Draw a triangle

Commodore 64 Logo Tutorial G-3

Graphics

Get familiar with the turtle commands. Use the commands or their abbreviations:

Command Abbreviation

FORWARD FD
BACK BK
RIGHT RT
LEFT LT

Let Logo Do Your Arithmetic

{Rgr}
Whenever Logo expects a number (we call this number its input), you can give it an
arithmetic expression to evaluate. Logo will automatically do the arithmetic for you.

Enter and Logo calculates
FD 50 * 5 FD 50
RT 100/3 RT 33.3333...
FD 5+5 FD 10

This feature is useful for both accuracy and precision. The computer will not make a
mistake, and will make a division like 100/3 quite precisely.

An Easy Way to Repeat Yourself: <CTRL> P, Up Arrow

You can put as many commands on the same line as you want, as long as you separate
them with spaces. When you have typed a line and pressed <RETURN>, Logo will
retrieve the line for you if you press <CTRL> P, or if you press the up arrow key.
(Remember, for <CTRL> P, hold down the <CTRL> key and press the <P>.) The up
arrow key is easiest to use. Both the up arrow key above the <RETURN> key and the up
arrow <CRSR> key below the <RETURN> key can be used. Type

{Five example graphics of below instructions, referred to as Xgr for remainder}
FD 50 RT 30 FD 20 RT 115 <RETURN>

Logo draws the line. Type

<CTRL> P

G-4 Commodore 64 Logo Tutorial

Graphics

Logo types

FD 50 RT 30 FD 20 RT 115

You press <RETURN> to do it.

Type <CTRL> P <RETURN> as many times as you wish; each time Logo will print and
execute the line.

Try typing

<CTRL> P <SPACE> <CTRL> P <RETURN> or
<Up Arrow> <SPACE> <Up Arrow> <RETURN>

{Rgr}
This will print out two sets of your instructions. You can repeat the <CTRL> or up arrow
as many times as you wish, up to 256 characters (a little more than 6 lines), as long as
there are spaces between the commands. If you put no space at the end of the line, and
type <CTRL> P twice, you will get

FD 50 RT 30 FD 20 RT 115FD 50 RT 30 FD 20 RT 115

The last command of the first batch will not be separated from the first command of the
second, and Logo will stop and display

THERE IS NO PROCEDURE NAMED 115FD

The Screen: DRAW, NORDIC (ND), TEXTSCREEN (Function Key <fl>),
SPLITSCREEN (Function Key <f3>), FULLSCREEN (Function Key <f5>)

When Logo is in DRAW mode, the Commodore 64 displays five lines of text at the
bottom of the screen.

-
The number of text lines displayed can be changed. See the definition of SPLITSCREEN
in the Glossary.
-

Commodore 64 Logo Tutorial G-5

Graphics

To see the commands you have typed that have disappeared under the picture, type

TEXTSCREEN or function key <fl>

To get back the split graphics/text screen, type

SPLITSCREEN or function key <f3>

To show off your drawing without the distracting text, type

FULLSCREEN or function key <f5>

<f3> will bring back the split screen from either the text- or fullscreen mode.

-
To erase any text displayed on the screen, press the <SHIFT><CLR> key. To erase any
graphics on the screen, type DRAW. To clear the screen and leave DRAW mode, type
NODRAW, abbreviated ND. Type ND <RETURN> right now.
-

Type DRAW again to do some graphics projects.

Turtle-driving Projects

Remember to check the Appendix for additional suggestions.

1. Determine how many turtle steps it takes to get to the top edge of the screen.
2. Determine how many turtle steps there are from the bottom edge of the screen to the
top. From the left edge to the right.
3. (Tricky one) How many turtle steps from the lower left corner of the split screen to the
upper right corner?
4. (Trickier still) How many turtle steps from the lower left corner of the full screen to the
upper right?
5. Try each of the commands with a negative number. (Example: FORWARD -100) How
else could the turtle make the same move?
6. Can you draw a square? A rectangle?
7. Can you draw your initials? '
 J
G-6 Commodore 64 Logo Tutorial

Graphics

Color: PENCOLOR (PC), BACKGROUND (BG), SINGLECOLOR, and
DOUBLECOLOR

There are sixteen available pencolors and sixteen background colors. The colors are
numbered from 0 to 15. Note that the colors marked on the keyboard are off by 1. This is
because colors in Logo start with 0 and on the Commodore 64 they start with 1.

Here are the colors and numbers for both pencolor and background color:
Color Number
Black 0
White 1
Red 2
Cyan 3
Purple 4
Green 5
Blue 6
Yellow7
Orange8
Brown 9
Light Red 10
Gray 1 11
Gray 2 12
Light Green 13
Light Blue 14
Gray 3 15

The PENCOLOR (or PC) primitive takes the number of the color as input, and sets the
turtle's pencolor to that color. Try typing

DRAW
PC 2
LT 45
FD 50
RT 90
FD 50

Commodore 64 Logo Tutorial G-7

Graphics

To change the background color, type BACKGROUND (or BG) and the number. BG 1
gives a white background. BG 1 PC 0 will give you a black pen on a white background.
Try typing

BG 4
RT 135
FD 62

In addition, changing the background color after a picture is drawn may change some of
the lines in peculiar ways. Returning to the original backgound {sic} color restores the
picture. To see the effects of the different combinations, set a background color and draw
some lines in each of the different colors. Change the background color and do it again.

On a black and white screen, colors take on different textures, but black and white remain
the same as always.

In the default setting which you have been using, called SINGLECOLOR, Logo draws
with thin lines. The colors can interfere with each other when the lines are too close. The
command DOUBLECOLOR will cause Logo to draw thicker lines and allow different
pen colors to be drawn closer together without affecting each other. When going from
SINGLE to DOUBLECOLOR or vice versa, the graphics screen is cleared and the pen
color and background color are set back to their default values. This also happens when
you leave DRAW mode and re-enter it.

Try typing

DOUBLECOLOR

and then experiment drawing with different pen and background colors. Typing DRAW
or NODRAW has no effect on the SINGLECOLOR, DOUBLECOLOR setting.

The Magic of PENERASE (PENCOLOR -1): Erasing

{Rgr}
PENERASE or PENCOLOR -1 erases the line when turtle tracks cross. This means that
the turtle can erase a line by going back over it with PENERASE. To see how it works,
type

FD 100
PC -1
BK 100

G-8 Commodore 64 Logo Tutorial

Graphics

Now is the time to see one of the amazing effects you can create.

Type

LT 2 FD 30000
PENERASE RT 45 FD 40000

Vary the turn and the distance forward for different effects. Try starting the turtle at the
edge of the screen.... Don't forget to set the PENCOLOR back to a positive number, or
you won't be able to draw a line the next time you want to. Note that PENERASE is the
same as PENCOLOR -1.

Now that you are familiar with several screen commands, you are ready to continue on
with the next sections.

Introduction to Procedure Writing

Now that you know how to drive the turtle around and make shapes, we will proceed to
giving your shapes names which will become new turtle commands. You will be able to
type BOX and get your box picture back, or SQUIGGLE to draw your squiggle.

To do this, you will write procedures.

A procedure is a series of commands which you design to achieve a specific purpose. The
commands may be composed of procedures and/or Logo primitives.

{Egr}
PRIMITIVE: a command built into Logo

PROCEDURE: a command that you define

{Graphic of a circle with the word PRIMITIVES. Surrounding this circle is a larger
circle with the word PROCEDURES repeated}

Commodore 64 Logo Tutorial G-9

Graphics

Think of the PRIMITIVES as the core of the world of PROCEDURES you will write.

FORWARD, BACK, LEFT, RIGHT, DRAW, and NODRAW are Logo primitives. You
used the primitives by typing their names, with numbers if they required them. To use a
procedure, you do the same.

Naming a Procedure

Type

MOVE <RETURN>

Logo tells you

THERE IS NO PROCEDURE NAMED MOVE

Logo is saying that it does not recognize the word you typed as either a Logo primitive or
a procedure name. It does not know how to do that command.

{Sgr}

The name of a procedure is the single word that you type to tell Logo to perform the
series of commands in the procedure.

Since you choose the name, select one that

1. Reminds you of what the procedure does
2. Is easy to remember
3. Is easy to type
4. Will not be confused with another name

G-10 Commodore 64 Logo Tutorial

Graphics

Writing a Procedure: EDIT Mode: TO, END, <CTRL> C, RUN Key, <CTRL> G

To write a procedure, start with the name. The tutorial will use the name MOVE, but you
may use your own.

We tell Logo that we're about to write a new procedure by writing TO and the name of
the procedure. For example, type:

TO MOVE

When you press <RETURN>, the screen will change: Logo will clear the screen and print
the words TO MOVE on the first line. Now Logo is in EDIT mode. The cursor will be at
the beginning of the next line. At the bottom of the screen there will be a white line with
black letters. It always says the same thing:

EDIT:CTRL-C TO DEFINE,CTRL-G TO ABORT .

{Sgr}

{Egr}
This reminds you that you are in EDIT mode, and tells you the two ways to get out of it:
<CTRL> C to Complete the job and <CTRL> G in which any changes you have made in
EDIT are Gone. Hitting <RUN> will have the same effect as <CTRL> C.

EDIT mode is very different from IMMEDIATE mode. In IMMEDIATE mode, Logo
does the commands that you type (like FORWARD or RIGHT) as soon as you press the
<RETURN> key. In EDIT mode, Logo waits for you to define a whole procedure; that is,
to write a series of commands that will constitute the new procedure.

Commodore 64 Logo Tutorial G-11

Graphics

{Graphic showing “DRAW” and “NODRAW”
each with an arrow pointing to “IMMEDIATE MODE”
and “TO (Procedure Name)”
on arrow going from I.M.
to “EDIT”
and “<CTRL> C”
on arrow going from EDIT to I.M.}

While you are in the editor you can create the procedure. To use the procedure, you must
first get out of the editor by typing <CTRL> C or <RUN/ STOP>, which puts you back
into IMMEDIATE mode. (But don't do this yet.)

When you are using the editor, you can use the arrows to move the cursor and to
erase the character at the left of the cursor, just as you can in IMMEDIATE mode.

Type a line of text to practice. For example, you might type

FORWARD 33
RIGHT 55

(or their short versions:)
FD 33
RT 55

Press the

<RETURN>

key. Note that it moved the cursor to the next line. In fact, <RETURN> is just another
character to the editor: you can even erase it with the key.

G-12 Commodore 64 Logo Tutorial

Graphics

Press

 and then the
<RETURN>

key again to see this. Press

{Rgr}
until the whole line under TO MOVE goes away. (Be careful, if you hold down the
 key, it will delete several characters very quickly.)

(See the APPENDIX for a discussion and summary of some other editing commands.)

Now type a series of commands, alternating FORWARD or BACK with RIGHT or
LEFT. Remember to include the number of turtle steps or degrees, and to press
<RETURN> after each.

For your first time through this tutorial, type either version of MOVE:

TO MOVE TO MOVE
FORWARD 100 FD 100
RIGHT 15 RT 15
BACK 80 BK 80

{Sgr}

{Egr}
Look over your procedure to be sure that

(1) the commands are spelled correctly,
(2) that you have used zeros in your numbers and not the letter O (zeros have
slashes through them on the Commodore), and
(3) that there are spaces between the commands and the numbers.

Commodore 64 Logo Tutorial G-13

Graphics

{Rgr}
Use the arrows and the key to fix errors. When you finish your repairs, leave the
cursor where it happens to be. Logo, unlike many other languages, does not require the
cursor to be at the end of the listing or even at the end of a line when you leave the EDIT
mode.

The white line at the very bottom of the screen tells you the two ways of exiting from the
editor and returning to IMMEDIATE mode.

Press <CTRL> C.

You can also use the <RUN/STOP> key instead of <CTRL> C. Logo will Complete your
procedure definition: it will return you to IMMEDIATE mode, and will remember your
procedure MOVE while you stay in Logo. It will confirm that it has read in your program
by saying

MOVE DEFINED

If instead, you type <CTRL> G, your work done in EDIT mode will be Gone: Logo will
return you to IMMEDIATE mode without accepting the work you did in EDIT. <CTRL>
G stops Logo, whatever it is doing. Logo will confirm this state of affairs with

STOPPED!
?

-
Note above that Logo types PLEASE WAIT...
Then MOVE DEFINED
followed by the prompt ?

(The wait occurs when you write a long procedure. You will not notice the wait with a
short procedure like this.)
-

Congratulations! You have written your first procedure. You have taught the turtle a new
command. But wait! It's not time for congratulations yet. Does it work? You must try it.

G-14 Commodore 64 Logo Tutorial

Graphics

Running a Procedure

Type

MOVE <RETURN>

Just as typing the name of a primitive makes Logo do it, typing the name of a procedure
makes Logo do what that procedure says to do. This is called RUNNING or
EXECUTING the procedure.

{Sgr}

If you have typed a word incorrectly within your procedure, Logo will try to help you by
printing an error message. If you cannot figure out what the problem is, see the
Appendix, which explains error messages with examples.

{Egr}
To make a change in your procedure, re-enter the EDIT mode by typing TO and the
name of your procedure. To change MOVE, type

TO MOVE

The screen will look as it did just before you left EDIT. Logo confirms that you are again
in EDIT mode with the white line at the bottom of the screen.

Make your changes using the arrows and key, and exit EDIT with <CTRL> C.
You are DEBUGGING your procedure (removing errors, called
bugs).

Run your procedure by typing its name. And now.... Congratulations! It should look like
the picture above.

Commodore 64 Logo Tutorial G-15

Graphics

Type MOVE again. The turtle will begin at the place it finished and will go in

the direction it was pointing. You can also add to the shape on the screen by driving the
turtle around with individual commands such as RIGHT 12 or FORWARD 55, but these
commands will not be included in the procedure.
-
{Sgr}
You may put as many commands on a line as you wish; separate them with spaces and
press <RETURN> at the end of the line to run them. If you run over the end of the line,
Logo will continue on to the next line. (In EDIT mode, Logo puts an exclamation point to
remind you that the line is continued).

CAUTION: In IMMEDIATE mode, Logo will do commands until it sees something it
does not recognize. If one of the first commands on a long line of commands is
misspelled, it will stop there and you will have to retype the incorrect one and all that
came after it.
-

Planning and Drawing Your Favorite Square

Procedures like MOVE draw somewhat random designs. Drawing a specific
shape requires more specific thought about the sequence of commands you will write.

Example: Define a procedure called SQUARE which will draw a square.

Decisions you must make:

The number of

1. steps on a side (your choice)
2. degrees to turn at the corner (Aha!)
3. times to do a side and/or turn (Hmmm)

Things to remember (always):
• Correct spelling of commands
• Space between command and number
• Use zeros in numbers, not the letter 0
• Press <RETURN> after each line
• Begin with the name: (for this one, type TO SQUARE)
• End your procedure with END

G-16 Commodore 64 Logo Tutorial

Graphics

{Rgr}
(Logo will put END in for you if you forget it. END is needed when you define more
than one procedure in the editor at the same time.)

• Exit the editor with <CTRL> C or <RUN/STOP> (C for Complete)

Analysis:

Decision 1: From your turtle-driving projects, you have a good idea of the size of the
screen. Choose a number considerably less than half, so that you can use your square in
larger pictures. Tape a sheet of clear plastic over the screen and draw the design you
want. Then, make the turtle trace your design.

Decision 2: Only one specific number of degrees will work here; if you don't know what
it is, try a few before you begin on SQUARE.

Decision 3: No doubt you know how many times you need to do the side and how many
times you need to turn to draw a square. We will discuss other options later on.

{Sgr}
SQUARE

Defining SQUARE:

To teach Logo the new command SQUARE, type

TO SQUARE

You are now in EDIT mode. Type in the commands you need, as you determined above.
If you make mistakes in typing, use the arrow keys and to correct them. If the
mistake is not on the line with the cursor, you must move the cursor to that line to correct
it.

Commodore 64 Logo Tutorial G-17

Graphics

{Egr}
Exit from EDIT mode with <CTRL> C (C for Complete), or <RUN/STOP>

(Forgive the repetition of (C for Complete); we just don't want you to lose any of the
work you have done in EDIT as you would with <CTRL> G (G for Gone. . .))

Type SQUARE to run it. Move or turn the turtle and run it again, and again. Notice that
the turtle draws the square from wherever it happens to be, and starts off on the first side
in whatever direction it is heading.

-
{Rgr}
Now for a trick or two. You certainly don't want to spend the rest mom of your life
typing SQUARE when you could obtain the same results typing SQ. (Would you want to
have to type the whole word FORWARD all the time?) You created the procedure
SQUARE using Logo primitives such as FD, BK, LT, and RT. Now you can create a
procedure SQ using the new Logo command, the procedure name SQUARE.

Using the editing techniques you have learned, write a procedure SQ that looks like this:

TO SQ
SQUARE

END

Clear the screen with DRAW and run SQ. Clear it again with DRAW and run SQUARE.
You should get the same results with both. Now, any time you want to draw a square,
type either SQ or SQUARE.

SQ and SQUARE can also be used in procedures any time you wish, and as many times
as you wish, just like the Logo primitives.
-

Projects: Simple Procedures

Write several of your own procedures. Choose appropriate names, but do not use the
name MOVE as we will be using that again later.

G-18 Commodore 64 Logo Tutorial

Graphics

What Goes Into a Procedure

Any command you can type at the keyboard, as well as any procedure you have written,
can be used in a procedure. Some commands have two versions: one is a word spelled out
at the keyboard and the other uses a function key or the <CTRL> key plus a letter. Use
the word in a procedure; the function key is only for convenience at the keyboard.

SUMMARY OF COMMANDS USED SO FAR
THAT HAVE A CONVENIENT KEYBOARD VERSION

Procedure Version Keyboard Version

TEXTSCREEN <f1>
SPLITSCREEN <f3>
FULLSCREEN <f5>

Remember that SPLITSCREEN can be changed so that there are more lines of text. See
the definition of SPLITSCREEN in the Glossary.

More Primitives: REPEAT, CLEARSCREEN (CS), HOME, PENUP (PU),
PENDOWN (PD)

The Logo command REPEAT saves you the work of typing a command or series of
commands more than once. You tell Logo the number of times you wish to repeat, and
enclose the command(s) to be repeated in square brackets.

Try these examples:

REPEAT 4 [FD 23]
REPEAT 3 [FD 30 RT 60]
REPEAT 8 [FD 65 RT 135]
REPEAT 20 [RT 50 FD 15 RT 60 FD 10]

As you will recall, when you type <CTRL> P or the up arrow, Logo will retype the
previous line for you. You press <RETURN>, and Logo will execute it.

To repeat MOVE 24 times, type

REPEAT 24 [MOVE]

Commodore 64 Logo Tutorial G-19

Graphics

If the turtle starts in the middle of the screen, the design created by repeating MOVE will
go off the edge (and appear on the opposite side). To avoid this, move the turtle before
starting the design. One hundred steps to the left and 100 steps down turn out to be a
good starting point for MOVE. Find a good starting point for your procedure.

To walk the turtle to its starting point for MOVE, type

LT 90 FD 100 LT 90 FD 100

{Sgr}

The turtle is there, but it is pointing down. To head it in the right direction to start
MOVE, type RT 180.

Now, what about the track it left? (If you type DRAW to get rid of the track, you will
also send the turtle home.) To keep it where it is as Logo clears the screen, type
CLEARSCREEN (or CS). Now try that REPEAT line with MOVE.

DRAW is a combination of CLEARSCREEN, SHOWTURTLE (explained later), and
HOME, the command that moves the turtle to the center of the screen and turns it to point
straight up. Walk the turtle around, and then type HOME to see what happens.

There is another way to move the turtle without leaving a trace. Tell it to pick up its pen
with PENUP (PU) before you start, and to put it down with PENDOWN (PD) when you
get there. The line would be

PU LT 90 FD 100 LT 90 FD 100 RT 180 PD

The turtle arrives ready to draw, without leaving tracks.

G-20 Commodore 64 Logo Tutorial

Graphics

Procedure Projects

1. Write a setup procedure to move the turtle to its starting point without leaving a track.
2. Write a procedure using REPEAT which draws a design with MOVE. 3. Write a
procedure to draw a four-sided figure. 4. Write a procedure to draw a rectangle.
5. Use your setup and rectangle procedures to draw a rectangle where MOVE began.
6. Write a procedure using REPEAT that repeats the sequence of drawing a shape with
one of your shape procedures and then turns the turtle (then draws the shape and turns...)

{Egr}
Saving Procedures: CATALOG, SAVE, POTS

You have created a procedure which Logo will remember as long as you do not exit Logo
or turn off your Commodore. To be able to turn the computer off without losing your
work, so that you may be able to use these procedures another day, you must ask Logo to
SAVE them on a Logo file disk. Use a file disk prepared according to the instructions in
the section titled Preparing a Blank Disk.

When you use the SAVE command, every procedure in your workspace is saved in a file
on your disk. Your workspace is like your desktop. You do your work here, sometimes
creating new material, sometimes bringing copies of files out of the drawers. When you
finish for the day, you go to the copying machine, make a copy for the file, and file the
copy away. Everything you are currently working on is on your desktop (in your
workspace). This may include many procedures. When you want to save the contents of
your workspace (desktop), use SAVE to transfer a copy of it to the disk (desk drawer).

The SAVE command normally copies the entire contents of your workspace into a file on
the disk. Just as your procedures have names, the collection of procedures in your
workspace, which will be saved in a file, must have a name too, to distinguish it from
your other files. Since you choose the name for the group of procedures in the file, it is a
smart idea to choose a file name that tells you what they are. The file name SHAPES
might be useful for the first group of procedures you will be writing as you go through
this chapter.

Commodore 64 Logo Tutorial G-21

Graphics

Type

SAVE “SHAPES

{Sgr} {Egr}
The double-quote character immediately preceding the word is a crucial part of the file
name. You cannot omit it. If you try to store your workspace without it, nothing will be

saved, because Logo does not recognize it as a file name without the quote character. If
you try to read a file without it, Logo will not find the file.

There is no space between the quote character and the word. The quote distinguishes file
names from other types of names such as procedure names.

{Sgr}
WARNING: You can have only one file per file name. Therefore, for the time being, use
a new file name each time you save your workspace (such as SHAPES, SHAPES1,
SHAPES2). If you had already had a file called SHAPES, the contents of the old file
would be erased, replaced by the present contents of your workspace.

If you had nothing in your workspace (which is the case every time you turn on the
computer, before you read a file or write a procedure) and typed SAVE "SHAPES, Logo
will print out a message telling you there is nothing to save. But if you had one item in
your workspace, Logo would still save the contents of your workspace, even though it is
almost empty, and the file "SHAPES would be replaced by a copy of the almost empty
workspace. The old file "SHAPES on the disk would be gone.

This would be like taking a blank book with only a title page to the copying machine,
copying it, and replacing your old files in the drawer with the copies of the blank paper.

You can also SAVE some of the procedures in the workspace without saving all of them
at once. To do this, use the same format for SAVE, but after the file name, add a list of
the procedures which you would like to save. (For now, a list in Logo can be defined as
whatever is inside a set of square brackets.) Since SAVE usually takes only one input (the
file name), you must use parentheses to tell Logo there is more than one input. For
example

(SAVE "PARTSHAPES [SQUARE RECTANGLE])

G-22 Commodore 64 Logo Tutorial

Graphics

To see the names of the files you have saved on your disk, type

CATALOG

Everything on the disk will be listed. Each Logo file will have your file name followed
by LOGO. For example, the new entry SHAPES.LOGO will appear on the list.

To print out the titles of your procedures in your workspace, type

POTS which is short for
PRINTOUT TITLES

To print out the commands in a procedure, type PO (procedure name) i.e.

PO SQUARE or PO MOVE

If you would like to see more than one procedure, use a list after PO, such as

PO [SQUARE RECTANGLE]

SUMMARY

Command Purpose: Lists Example

CATALOG Files on disk CATALOG
POTS Procedure titles POTS
PRINTOUT or PO Procedure commands PO MOVE

Clearing the Workspace, Reloading Procedures: READ, GOODBYE, ERASE (ER),
ERASE ALL, ERASEFILE

You may reload procedures into your workspace at any time. The usual time would be
when you begin a new session with Logo, but there will be times when you wish to add
the contents of another file to what is already in your workspace. To list on the screen the
files which are saved on your disk, type CATALOG, as before. To reload the procedures
from your file SHAPES.LOGO, type

READ "SHAPES

Commodore 64 Logo Tutorial G-23

Graphics

The red light on the disk drive will go on, the disk will whirr, and the computer will print
out the name of each of your procedures in your file SHAPES and confirm that it has
been read into your workspace by printing DEFINED. For instance,

MOVE DEFINED

{Sgr}
A word of warning: if you have changed MOVE in your workspace, the version read in
from the disk will wipe out the one in your workspace. If you want to keep both versions,

rename the one in your workspace using EDIT, before you read in the file. You can
change the name in EDIT mode just as you change a command.

To store all your procedures back in SHAPES, type

SAVE "SHAPE

{Graphic showing “SAVE "FILENAME”
on arrow going from “WORKSPACE “
to “FILES”
and “READ "FILENAME”
on arrow going from F to W.S.}

There will be times when you want to clear your workspace, particularly when you want
to shift gears and read in another file. If you want to save your current work, save it first.

To clear your workspace, type

GOODBYE

-
A similar result can be achieved with the command ERASE ALL. You can also use other
modifiers with ERASE such as PROCEDURES and NAMES. See the Glossary for an
explanation of GOODBYE and ERASE.
-

G-24 Commodore 64 Logo Tutorial

Graphics

In addition, you may erase any individual procedure with ERASE and its name, i.e.
ERASE MOVE. Be sure any procedure you want to keep is saved on disk before erasing
it from your workspace. If you wish to erase several procedures at once, ERASE can take
a list of procedure names just as PO can. For instance

ERASE [MOVE RECTANGLE]

To remove a file permanently from the disk, use ERASEFILE followed by the file name.
For example

ERASEFILE "SHAPES1

Do not type this unless you wish to get rid of the file SHAPES1 on the disk. ERASEFILE
has no effect on your current workspace.

Saving, Reading and Erasing Pictures: SAVEPICT, READPICT, ERASEPICT

-
Logo can store complicated pictures on your disk and read them back in much less time
than it takes the procedure to draw them. However, there is a tradeoff in disk space. The
procedure might take 1 block of disk storage space. The picture will occupy 38 blocks.
Only you can decide when this is worthwhile.

To save a picture (whatever is on the drawing part of the screen at the time), assign it a
name. We shall use DANCER. To save the picture part of the screen on the disk under
the name DANCER, type

SAVEPICT "DANCER

{Graphic of ballerina dancer design}

The name you choose can be any name you care to give it. It does not have to be the
same name as the procedure that drew it, but it could be. The picture can be the result of
running one or several procedures (without clearing the screen between), or driving the
turtle around, or a combination. Everything on the picture part of the screen, except the
turtle, is stored with SAVEPICT.

To recall a stored picture, type

READPICT "DANCER

Commodore 64 Logo Tutorial G-25

Graphics

Picture files are stored differently than Logo files. They are stored as two files, one with
the picture and the other with color information. Instead of ending with LOGO, the files
end with .PIC1 and .PIC2. When you use READPICT, it automatically looks for files
with these endings.

To remove the picture from the disk forever (not just from the workspace), type

ERASEPICT "DANCER

In each case, use the double-quote character before the first character of the name.
-

The Invisible Turtle: HIDETURTLE (HT), SHOWTURTLE (ST)

There are two situations in which you might want the turtle to become invisible.

{Rgr}
1. To get it out of the way of your picture either during the drawing or after the picture is
completed.
2. To speed up the drawing of a picture (the invisible turtle draws faster).

To tell the turtle to become invisible, type

HT (or its long form) HIDETURTLE

To tell it to reappear, type

ST or SHOWTURTLE

Except for being invisible, the hidden turtle works exactly the same as the visible turtle.
In particular, it draws when its pen is down and leaves no trace when its pen is up.

Changing the Textscreen Color: TEXTCOLOR, TEXTBG

Some monitors and TVs are not easy to read with the default colors used in Logo. If this
is a problem, you can change the color of the text using TEXTCOLOR, and change the
color of the background using TEXTBG. The same 16

G-26 Commodore 64 Logo Tutorial

Graphics

colors can be used that are used on the graphics screen. See your Commodore 64 User's
Guide for the color and key chart. Type

TEXTCOLOR 0

and the cursor will change to black. Anything that you type from now on will be black
until you change the color again. TEXTBG works exactly the same way. Type

TEXTBG 1

and the background will turn white. To get back to the original colors of dark blue letters
on a light blue background, use

TEXTBG 14
TEXTCOLOR 6

By pressing the <CTRL> key and any number key from 1 to 8, the text color will be
changed to the corresponding color on the chart below.

Putting Letters on the Graphics Screen: STAMPCHAR

Putting text on the graphics screen can be done with the command STAMPCHAR.
STAMPCHAR works best in SINGLECOLOR (the default) mode. (But if you insist on
DOUBLECOLOR, it looks best if the turtle's pencolor is the same as the text color.) To
use STAMPCHAR, give it a letter, and it will print it on the screen.

STAMPCHAR "F

The quote mark is needed to tell Logo that F is a one-letter word and not a procedure that
it should run. To see what you have typed, hide the turtle or pick up the pen and move it
forward. Changing the PENCOLOR changes the color of the letter stamped.

See the description in the appendix of the Utilities disk file called STAMPER. The file
has procedures using STAMPCHAR, with which you can print whole sentences on the
graphics screen instead of single letters.

Commodore 64 Logo Tutorial G-27

Graphics

SUMMARY OF LOGO COMMANDS USED SO FAR

TURTLE COMMANDS

Command Abbreviation
FORWARD FD
BACK BK
LEFT LT
RIGHT RT
HOME
PENUP PU
PENDOWN PD
HIDETURTLE HT
SHOWTURTLE ST
PENCOLOR PC
BACKGROUND BG
PENERASE PC -1
STAMPCHAR

FILE COMMANDS

SAVE
READ
ERASEFILE
SAVEPICT
READPICT
ERASEPICT

SCREEN COMMANDS

CLEARSCREEN CS
DRAW
NODRAW ND
TEXTSCREEN <f1>
SPLITSCREEN <f3>
FULLSCREEN <f5>
TEXTCOLOR
TEXTBG

G-28 Commodore 64 Logo Tutorial

Graphics

PENCOLORS

PC 0 Black
PC 1 White
PC 2 Red
PC 3 Cyan
PC 4 Purple
PC 5 Green
PC 6 Blue
PC 7 Yellow
PC 8 Orange
PC 9 Brown
PC 10 Light Red
PC 11 Gray 1
PC 12 Gray 2
PC 13 Light Green
PC 14 Light Blue
PC 15 Gray 3

Commands used in all Logo domains (Graphics, Computation, etc.):

TO ... REPEAT CATALOG
END <CTRL> P PO

up arrow POTS
ERASE

READ EDIT GOODBYE
SAVE <CTRL> C

<CTRL> G

<CTRL> P, <CTRL> C, and <CTRL> G are keyboard instructions which usually cannot
be used in procedures. See the explanation of the <INST> key in the Appendix for how
they can be included in procedures, along with other control keys and cursor keys.

Commodore 64 Logo Tutorial G-29

-

Graphics

More About the Editor: <CTRL> P, <CTRL> N, <CTRL> 0, <CTRL> A, <CTRL> L,
<CTRL> D, <CTRL> K, Arrow Keys

In EDIT mode, you must often move the cursor from one line to another. One way to do
this is to use an arrow key. Remember, the arrow keys have an auto-repeat feature, so
holding down an arrow key will cause the cursor to move until you release the key.

Another way to move the cursor is to type

<CTRL> P

to go to the Previous line (Up on the screen),

<CTRL> N

to move the cursor to the Next line (Down on the screen).

(This is the same <CTRL> P you used in IMMEDIATE mode to get Logo to retype the
previous line for you. Note that many things are different when you are in the editor.)

To Open up a space to insert a new line, type

<CTRL> 0 (letter 0)

No matter where the cursor is on the line, the rest of the line will be moved down to the
next line, but the cursor will stay put.

To move the cursor to the beginning of the line, type

<CTRL> A

To move the cursor to the Last character of the line, type

<CTRL> L

To Delete the character under the cursor, type

<CTRL> D

G-30 Commodore 64 Logo Tutorial

Graphics

Note that this is the opposite of the key which deletes to the left of the cursor.

To Kill a line from the cursor to the end, type

<CTRL> K

Other editing commands are described in the APPENDIX.

SUMMARY OF EDITING COMMANDS

MOVING MOVING
BACKWARD FORWARD

By 1 character Left arrow Right arrow
To end of line <CTRL> A <CTRL> L
To adjacent line <CTRL> P or <CTRL> N or

Up arrow Down arrow

DELETING DELETING
BACKWARD 0FORWARD

By 1 character <CTRL> D
By Line - <CTRL> K

FOR EASY INSERTION OF A LINE

Open line <CTRL> 0

Projects Using Shapes

1. Write a procedure (using SQ or SQUARE) that puts a square in each corner of the
screen. (Hint: remember PENUP?) (Don't forget PENDOWN.)
2. Write a procedure that draws a row of squares.
3. Write a procedure that draws a tower of squares. (Hint: use your row of squares
procedure in it)
4. Write a procedure that draws a leaning tower of squares. (use your tower procedure)
5. How about a window with four panes?

Commodore 64 Logo Tutorial G-31

Graphics

6. Write a different procedure to draw the same size square as SQUARE.
7. Using the same sort of analysis used in developing the SQUARE procedure, figure out
how you would draw a triangle whose turns are all the same size, then write the
procedure.
8. Try #1-4 using triangles.
9. Write procedures to use your 4-sided (not a square) figure to make designs.
10. How about a window with 6 triangular panes?
11. Write a different procedure to draw the same size triangle.

Since all your new procedures (and old) are in your workspace, you can safely save them
all in SHAPES by typing SAVE "SHAPES.

Listing a Procedure: PRINTOUT (PO), <CTRL> W

Just as you can print out titles using POTS, you can also PRINTOUT the list of
commands in any procedure. Type

PO (procedure name)

PO SQUARE

To list several procedures in your workspace, type

PO [procedure name procedure name procedure name]

PO [SQUARE BOX RECTANGLE]

PO provides a handy, quick way to check on a procedure, but to make changes in it, you
must get into EDIT mode as described before. Type

PO ALL

to scroll by the listings of the entire contents of your workspace. (PO can also
use PROCEDURES, NAMES, and TITLES as its input instead of ALL or a procedure
name.) Use

{Rgr}
<CTRL> W (W for Wait)

to stop the scrolling. Any key which you hit next, including <CTRL> W, will cause the
scrolling to continue. Stop it again with <CTRL> W as before.

G-32 Commodore 64 Logo Tutorial

Graphics

SUMMARY OF LISTING COMMANDS
Command Result

CATALOG Lists names of files on disk in disk drive
POTS Lists names of procedures in workspace
PO (procedure name) Lists commands in named procedure
PO ALL Lists the entire contents of the workspace
<CTRL> W Wait: computer waits for another key to be pressed: press

<CTRL> W again for line by line inspection, or any key to
resume scrolling.

Heading: A Matter of State

It is possible that when you closed your square and triangle, you finished your procedure
with FD and did not follow it with a turn. This left the turtle heading in the direction the
last side required. This makes it handy to draw successive figures in new positions, but it
leads to confusion when you want to use the shape in another procedure.

It is generally good Logo practice to leave the turtle in the same state in which you found
it. The state of the turtle is its position and heading. It is already in the original position,
since you closed the figure. All that is required is to turn the turtle so that it is heading in
the original direction. This means one more turn, the same size as the other turns.

-
Consider these three procedures:

{Xgr}
TO SQ

FD 30
RT 90
FD 30
RT 90
FD 30
RT 90
FD 30

END

TO SUPER
REPEAT 8 [SQ RT 45]

END

TO STRANGE {improperly indented in text}
REPEAT 4 [SQ]
RT 45
REPEAT 4 [SQ]

END

Both SUPER and STRANGE draw the same design (although they draw the parts of the
design in a different order).

Commodore 64 Logo Tutorial G-33

Graphics

Note that the last turn in SQ, the one that would turn the turtle back to its original
heading, is omitted.

If you edit SQ now to add a RT 90 at the end, SUPER will still draw the same design (in
yet a new order), but STRANGE will not.

This may seem odd at first because we have not changed STRANGE. However, we DID
change the procedure STRANGE uses.

To counteract the effect of adding the RT 90 at the end of SQ, we would have to insert a
LT 90 immediately after SQ in each procedure that uses it.

This kind of fix is not always so easy. For example, if the newly introduced extra was a
line instead of a turn, it would be harder (in some contexts, impossible) to counteract its
effect.

So it is best to leave the turtle heading as it started. This will eliminate many interface
bugs (puzzling things that must be fixed in order to use one procedure after another).
-

Copying a Procedure

Your procedures SQUARE and TRIANGLE may now need another command t added
to them to turn the turtle to its original heading. But you have used SQUARE and
TRIANGLE in other procedures; Changing them now would spoil the procedures that use
them. Take heart; change SQUARE, but give the new version a new name, such as
SQUARE1. While in EDIT, change the name slightly (it can be edited like any other part
of the procedure), then move down and add the new command. Voila. You now have
your original procedure plus a slightly altered copy under a new name.

A Magic Number

Now for a rather basic question: how far around did the turtle turn when it drew the
square that left it in the same state that it started from (same position and heading)? (Add
up the turns.) How far around did the turtle turn when it drew the triangle that left it in its
original state?

G-34 Commodore 64 Logo Tutorial

Graphics

You have just discovered a great truth: the turtle will turn the same amount to get back to
its original heading, no matter how it goes. The total amount of the turn, adding the turns
in one direction and subtracting if it turns the other way, will be the magic number you
just discovered. (Of course, if it goes one way and then cancels the turn out completely
by going the other way, the total turn will be 0, but it will not have traveled completely
AROUND anything, either.) This is called The Total Turtle Trip Theorem: if the turtle
travels around an area, no matter what shape, and ends in the same place that it started,
heading in the same direction, it always turns the same amount.

You can use the magic number to make shapes with any number of sides. To see the
relationship between the magic number and the turns you made in the square, divide the
magic number by the number of turns. Let Logo do it for you. On the computer, where
we cannot type one character above another on a single line, we use the slash (/) (on same
key as the ?) for division. To divide 10 by 5, type

10/5

Logo will reply

RESULT: 2

Remember, when Logo requires a number, it can use the result of an arithmetic operation,
so you can also use this division as the number required by the Logo primitives FD, BK,
LT, and RT. For example,

Command Equivalent

FD 100/2 FD 50
RT 300/30 RT 10
BK 200/4 BK 50
LT 360/4 LT 90

Projects: More Shapes

1. Using REPEAT and division in your turn command, write another procedure that
draws a square.
2. Using REPEAT and division in your turn command, write another procedure that
draws a triangle.

Commodore 64 Logo Tutorial G-35

Graphics

3. Using REPEAT and division in your turn command, write a procedure that draws a 5-
sided figure.
4. Write a procedure that draws a 6-sided figure.
5. Write a procedure that draws a 7-sided figure.
6. How about a 15-sided figure?

Introduction to Variables: Procedures That Take Inputs

DRAW does the same thing each time it is used. FORWARD is more flexible; it moves
the turtle different distances depending on its input.

{Egr}
INPUT is the specific term for the number required by commands like FD, BK, LT, and
RT. (Later you will also see INPUTS which are not numbers.)

So far your procedures have always done the same thing each time they were used, but it
is possible to write procedures which use some input to tell them, for example, how much
to move the turtle.

It would be nice to have a BOX procedure which draws different sized squares, just as we
have a line procedure (FORWARD) which draws different lengths of line.

We would expect BOX 10 to produce a small box and BOX 100 to produce a larger box.
To describe what happens more fully, we might say:

To draw a box of some dimension,
we go forward that dimension,
turn right 90 degrees,
go forward that dimension,
turn right 90,
forward that dimension,
right 90,
forward dimension,
right 90

and that's it.

G-36 Commodore 64 Logo Tutorial

Graphics

The Logo translation of the English is very similar:

TO BOX :DIMENSION
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90

END

Or, we could have said:

To draw a box of some dimension,
we must, 4 times, go forward that dimension
and turn right 90 degrees.

which translates into Logo as

TO BOX :DIMENSION
REPEAT 4 [FD :DIMENSION RT 90]

END

NOTE:

{Egr}
1. The : that appears in the procedure must be there every time an input variable is used,
attached directly to the variable name without a space between. The dots distinguish the
name of a variable from the name of a procedure. We call the colon (:) DOTS because it
is more descriptive, and the colon isn't used grammatically as a colon.
Read :DIMENSION as DOTS DIMENSION.

2. Variable names are just as much your choice as procedure names. We could have
written

TO BOX :WIDTH or
TO BOX :DIST or even

TO BOX :X

Commodore 64 Logo Tutorial G_37

Graphics

Of course, the name you choose in the title line must also be the one used within the
procedure, so those procedures would have had

FD :WIDTH FD :DIST and FD :X

3. Note where the variable-number name must go: in the same place in which you
previously put the constant number. In the procedure TRI, for example, FD 100 becomes
FD :LENGTH. To pass the number into the procedure for FORWARD to use, the title
now must become TO TRI :LENGTH. The two procedures look like this:

TO TRI
REPEAT 3 [FD 100 RT 120]

END

TO TRI :LENGTH
REPEAT 3 [FD :LENGTH RT 120]

END

{Sgr}
TRI

This TRI procedure is very much like the Logo primitives you have been using. For a
triangle of any size, you type TRI and the length of the side.

Try a few triangles of different sizes.

{Egr}
Try typing TRI without a number. Now that TRI is defined with a variable input, Logo
looks for that input, just as it does when you type FD or RT. To recall just what inputs a
procedure is expecting, type either POTS, to print out the titles of all the procedures in
your workspace, or PO (procedure name), to print out the one procedure (for instance PO
TRI).

G-38 Commodore 64 Logo Tutorial

Graphics

You have a choice now when you want to use TRI in another procedure. You ! can
specify the size of the triangle in the procedure (TRI 75), or you can choose to decide on
the size when you run the superprocedure it is in. You must pass the number in to TRI if
you do not specify it inside the procedure. For example:

{Xgr}
TO TWO.TRI

TRI 75
RT 90
TRI 75

END

TO TWO.TRI2 :LENGTH
TRI :LENGTH
RT 90
TRI :LENGTH

END

Note: Two words can be combined with a dot to make a title.

Both versions of TWO.TRI use the same subprocedure TRI. Both versions can make a
triangle design with triangle sides of length 75. BUT one version can only draw a size 75
design, while the other can draw designs of any size. The size of its design will depend
on the number you give it when you run it.

{Egr}
The variable name :LENGTH may be used in any number of procedures. You are
allowed to have only one procedure named SQUARE or TRIANGLE, but both may use
the variable name :LENGTH. :LENGTH is what is called a local variable, local to its
procedure. A name used in one procedure will not interfere with the same name used in
another.

This also means that TWO.TRI2 could have used a different name for the variable than
was used internally by TRI.

Projects: Sizable Shapes

1. Write a procedure SQV with variable input and use it in a new procedure SQUARE4
to draw a series of squares of different sizes, all starting at the same place. (Hint: you can
add to a picture; you don't have to clear the screen with DRAW everytime you want to
draw something more.)
2. Add another set of squares beside the first.
3. Write a procedure that uses a specific size square in it.
4. (Here's a toughie) Write a procedure that draws 4 squares, each 25 steps bigger than
the last, and which receives as input the size of the first square when the procedure is run.

Commodore 64 Logo Tutorial G-39

Graphics

From SQUARE to POLY

SQUARE4 (if you did project 1) now has a variable input for the length of the side, but it
still has two other numbers, the size of the turn and the number of times the sequence is
repeated. Either or both of these numbers could also become variables. (However, if we
change either one, it would not draw a square.)

You know from your experiments that 360 is the magic number that takes the turtle all
the way around and back to the same heading, no matter what shape it is going around.
You also know that the amount of the turn at each corner is 360 divided by the number of
turns. Remember too that Logo will do all the work of dividing for you. You may use
360/4 as the input for your turn in SQUARE4, for instance.

In other words, the SQUARE4 procedure could be written

TO SQUARE4 :LENGTH
REPEAT 4 [FD :LENGTH RT 360/4]

END

The 4 in both places is the number of turns. SQUARE4 now has a variable input for the
length of the side and one other number that might be changed, the number of turns or
sides. What if we made that number a variable, too? The procedure would repeat the side-
and-turn sequence that number of times, and would divide 360 by the number for the
turn. Sounds all right, but it wouldn't draw a square. It would draw a many-sided figure,
(called a polygon) with the number of sides you chose when you ran it .CALL it POLY.

POLY will need two names for the variable inputs, and they should clearly describe what
they are for.

:LENGTH would be fine for the length of the side again, and you could use :TURNS for
the number of turns (or sides).

Both variable names must appear in the title, to pass the numbers in to where they are
used in the procedure. Choose the order you will remember best. They do not have to
appear in the title in the order in which they are used in the procedure, but, when you run
POLY, the numbers must be typed in the same order as the variables which represent
them in the title. POLY 100 4 will be very different from POLY 4 100.

G-40 Commodore 64 Logo Tutorial

Graphics

So POLY could look like this:

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

{Sgr}
POLY

Projects: Regular Polygons

Experiment with different inputs to POLY. Write down the ones you like. 1. What is the
difference between POLY 100 4 and POLY 4 100? Try them both.

2. Try POLY with the same :LENGTH input and a lot of different numbers for :TURNS.
3. Keep :TURNS the same and try a lot of different numbers for :LENGTH. 4. Make a
design using POLY twice, with a different number of sides (:TURNS) each time.
5. Use POLY to make a triangle.
6. What is the largest number you can use for turns? (Hint: hide the turtle for a quicker
trip.)

Another View of POLY

Look back at the procedures in which you used division to help you draw 3, 4, 5, 6, and
7-sided figures. They probably look a lot alike. In English, you might describe them this
way:

To draw a shape of some specified number of sides, repeat for each side: go forward
some distance and turn right 360 divided by the number of sides.

Commodore 64 Logo Tutorial G-41

Graphics

Let's use a forward distance of 50. The English translates to Logo:

TO FIGURE :NUMBER.OF.SIDES
REPEAT :NUMBER.OF.SIDES [FD 50 RT 360/:NUMBER.OF.SIDES]

END

(Note that the REPEAT statement must be typed on one line.) Type in FIGURE and try it
with various inputs. Try

[2 Xgr]
FIGURE 3
FIGURE 4

We can also make shapes of various sizes by making the forward distance a variable.
Replace the 50 with the variable :DIST and add it to the title:

TO FIGURE :NUMBER.OF.SIDES :DIST
REPEAT :NUMBER.OF.SIDES [FD :DIST RT 360/:NUMBER.OF.SIDES]

END

Try

{Xgr}
FIGURE 3 50 and FIGURE 50 3

It is important to remember the order of the variables in the title.

This procedure is identical to POLY except that the variables have different names and
are in a different order in the title.

Circles

So far we have drawn only straight lines. How does the turtle draw curves? When you
consider that all it can do is step and turn, then it must be some combination of steps and
turns in curves as well as in straight-sided figures. Experiment with small steps and small
turns. Use REPEAT with your little steps and turns to avoid exhaustion. Try some

combinations in IMMEDIATE mode, then make procedures of the combinations you
like.

G-42 Commodore 64 Logo Tutorial

Graphics

{Egr}
Some things to remember:
• the turtle draws faster when hidden (HT)
• <CTRL> G stops the turtle, whatever it is doing
• you know how far the turtle must turn to finish back where it started

Projects: Curves

Try these first, then make procedures of the ones you would like to be able to use. Give
your procedures descriptive names, for instance, a 6th-of-a-circle arc to the right might be
ARCR6.

1. Use REPEAT to draw a circle, then without clearing the screen, draw another
circle with steps twice as big as in the first one. Draw another with the turn twice as big.
2. Draw a circle to the right and an identical one to the left.
3. Figure out the diameter (distance across) of the last circle.
4. Draw a quarter-circle arc to the right.
5. Draw another quarter-circle arc with steps twice as big as the one in #4.
6. Draw a 6th-of-a-circle arc to the left, then a 6th-of-a-circle arc to the right. (Hint: use
division, and let Logo do it for you)
7. Write a procedure that uses an arc procedure and straight lines to draw a picture or
design.
8. Do these projects using variable inputs for the step size and the number of degrees.

There are also several demonstration arc and circle procedures on the Utilities Disk. See
the Utilities Disk section.

Using Subprocedures

A procedure used as a command in another procedure is called a subprocedure. The
procedure which uses it is a superprocedure. You have already used SQUARE as a
subprocedure when you called it in the superprocedure SQ, and, if you did the projects,
you used procedures as subprocedures to draw towers, windows, and a design with arcs
and lines.

A subprocedure is useful when you want to use a procedure as a new primitive in a
variety of procedures, or several times in one procedure. You could write a procedure to
do one side of a square (such as FD 73) and one turn (RT 90). If you

Commodore 64 Logo Tutorial G-43

Graphics

called it SQUARESIDE, then your square procedure would look like this:

TO SQUARE2
SQUARESIDE
SQUARESIDE
SQUARESIDE
SQUARESIDE

END

(or perhaps)

TO SQUARE2
REPEAT 4 [SQUARESIDE]

END

[2 Sgr]
SQUARESIDE SQUARE2

Any Logo procedure can be a subprocedure. In addition, subprocedures may have
subprocedures of their own.

For example:

SQUARE2 uses SQUARESIDE as a subprocedure.

We write WINDOW which uses SQUARE2 as a subprocedure.

SQUARE2, which has SQUARESIDE as a subprocedure, is now also a subprocedure.
We write HOUSE, which uses WINDOW, and TOWN, which uses HOUSE.

G-44 Commodore 64 Logo Tutorial

Graphics

We can build as far as we want; all the procedures except the top one (TOWN) will be
used as subprocedures, and all but the bottom one (SQUARESIDE) will use
subprocedures. All but TOWN and SQUARESIDE will both use and be subprocedures.

[3 Sgr]
WINDOW HOUSE TOWN

{Rgr}
The point of this exercise is to show that even now you are writing procedures you can
use later on. As you write your way through the tutorial, note the procedures that may be
particularly useful to you as subprocedures. You might even want to file them separately
after a while, in a file called NEW.PRIMITIVES (Logo allows you to use periods in your
procedure and file names to connect words.) Your arc procedures are good examples of
useful primitive-like subprocedures.

Non-stop Procedures: Introduction to Recursion

Your procedures up to now have been very well-behaved and have stopped when you
told them to. Now let's try a type of procedure that simply doesn't know when to stop.

{Egr}
As you know, a Logo procedure can use any Logo command, whether it is a primitive or
a procedure. This includes a procedure being able to use itself.

The ability of a procedure to call itself is called recursion. We shall work up to the power
of recursion with some simple examples. What happens when you tell a procedure to do
itself? Let's try it with a square program:

TO SQUARE3 :LENGTH
FD :LENGTH
RT 90 (Stop me with <CTRL> G)
SQUARE3 :LENGTH

END

Commodore 64 Logo Tutorial G-45

Graphics

What have we told SQUARE3 to do?
1. Draw a side and do a turn
2. Do SQUARE3

1. Draw a side and do a turn
2. Do SQUARE3

1. . . .

Only a <CTRL> G typed at the keyboard will stop this runaway square. It will go over
and over the same track until you stop it. Not very interesting.

But what would happen if there was a side and a turn that made a design which would not
go over itself? Change the amount of the turn. Try a little more or less than the 90 used
for a square. Try, for example,

{Xgr}
FD :LENGTH
RT 87

Projects: Simple Recursion

1. Write a recursive procedure that draws a little figure then calls itself.
2. Write a recursive procedure that uses arcs and lines.
3. Use your triangle procedure in a recursive procedure.
4. Write a recursive procedure to draw a star.

Recursion: Changing the Input WRAP, NOWRAP

Another interesting possibility is that of changing the length of the side each time it is
drawn. Remember, wherever Logo requires a number, there are several ways to give it
one. We have tried actual values (100 for instance) and right now we are using a variable
(:LENGTH). The next kind of number to try is a number which Logo will produce for us
by doing some arithmetic, for instance, :LENGTH + 3.

TO SQUARAL :LENGTH
FD :LENGTH
RT 90
SQUARAL :LENGTH + 3

END

G-46 Commodore 64 Logo Tutorial

Graphics

When SQUARAL calls SQUARAL, it uses a little bigger number for the length of the
side. Now, even with a turn of 90, the design will not repeat itself on the same path.

What happens when you run this procedure: Type

SQUARAL 5

{Xgr}
SQUARAL

1. The turtle moves FD 5 for the first side and turns right.
2. Logo runs SQUARAL 5 + 3.

SQUARAL 8

1. The turtle moves FD 8, 3 steps more than the first side and turns.
2. Logo runs SQUARAL 8 + 3.

SQUARAL 11

1. The turtle moves FD 11 and turns.
2. Logo runs SQUARAL 11 + 3.

and so on.

The second side, and each side after it, will be 3 steps longer than the previous side, and
the picture will clearly not be a square.

-
Before long, the line spills off the edge and reappears on the other side of the screen.
Logo is in WRAP mode, where the lines wrap around the screen rather than stopping at
the edge. This can create some unexpected effects.

Remember, you can use FULLSCREEN or <f5>, SPLITSCREEN or <f3>, and
TEXTSCREEN or <fl> to change the amount of drawing space showing on the screen.
(See the Appendix to see how SPLITSCREEN can be modified to show different
amounts of text at the bottom.)

To make Logo stop the procedure when the line threatens to get out of bounds, type
NOWRAP to put Logo into NOWRAP mode.

Commodore 64 Logo Tutorial G-47

Graphics

Now, no matter where the turtle is when you run the procedure, when the design gets too
big for the screen, Logo will stop it. (There are more elegant ways to stop recursive
procedures mentioned later on. See Stopping With Style.)

The commands WRAP and NOWRAP, like all other Logo commands, can also be used
in procedures. Whenever they are used, each stays in effect until the other is used, or until
you exit DRAW mode.

-

Projects: Changing Inputs

Make the changes suggested below and give each changed version a new name. Run each
version with several different inputs, large and small (SQUARE 10, SQUARE 100 for
instance)

1. Change the amount added to :LENGTH in SQUARAL make it large; make it very
small.
2. Subtract an amount from :LENGTH in SQUARAL instead of adding to it.
3. Change the size of the turn a little bit.
4. Multiply :LENGTH by a number. Keep trying until you find one you like. Remember,
use the star (*) for multiplication. (Hint: you can use decimals such as 1.1 or 1.5)
5. Try all of your procedures in WRAP mode and NOWRAP mode.
6. Write a procedure which takes a variable input and draws one square.
(Hint: use REPEAT) Then write a recursive procedure that uses the square
procedure as a subprocedure and draws a series of squares which get bigger
and bigger.

Stopping With Style: IF-THEN, STOP

Logo can make choices based on what you tell it to do. You can write IF (something) is
true, THEN (do something else) (STOP for instance). (If it is not true, it will go directly
to the next line. If it IS true, and the instruction is not STOP, it will execute the
instruction and THEN go to the next line.)

For example, you would like to be able to specify the number of times a recursive
procedure executes, and specify a different number every time you run it. Make the
procedure count down from the number you give it, and test the count each time it
executes with

IF :TIMES = 0 THEN STOP

G-48 Commodore 64 Logo Tutorial

Graphics

Here is a procedure that draws a square, turns the turtle a little, and does it again.

TO DESIGN :TIMES
IF :TIMES = 0 THEN STOP
SQUARE 50
RT 45

DESIGN :TIMES - 1
END

This is what happens when you type

{Xgr}
DESIGN 4

1. Logo tests :TIMES (4) to see if it is zero
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 4 - 1 or DESIGN 3

{Xgr}
DESIGN 3

1. Logo tests :TIMES (3) to see if it is 0
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 3 - 1 or DESIGN 2

{Xgr}
DESIGN 2

1. Logo tests :TIMES (2) to see if it is 0
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 2 - 1 or DESIGN 1

{Xgr}
DESIGN

DESIGN 1

1. tests :TIMES (1) to see if it is 0
2. runs SQUARE and turns the turtle
3. calls DESIGN 1 - 1 or DESIGN 0

DESIGN 0

1. Logo tests :TIMES (0) to see if it is zero and stops.
:TIMES = 0 is finally true.

Commodore 64 Logo Tutorial G-49

Graphics

Control is passed back to each level in turn and the procedure is done. This aspect of
recursion will be covered in the next section.

What happens when your friend tries to be funny and runs DESIGN with a negative
number? (Ah, you tried it . . . Well, remember <CTRL> G.) You will be pleased to know
that you can test for that also. In fact, you can put as many tests as you wish in your
procedure. You can test for that negative number by using one of the two other
conditions, less than (<) or greater than (>).

To cover both situations, your negative friend and the normal ending of the procedure,
change your test:

TO DESIGN :TIMES
IF :TIMES < 1 THEN STOP
SQUARE 50
RT 45
DESIGN :TIMES - 1

END

Now DESIGN will stop when :TIMES gets to 0 and will never start if :TIMES is less
than 0.

The procedure can still have variable inputs for other values, such as the length of the
side of the square:

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT 45
DESIGN :TIMES - 1 :LENGTH

END

You can even change the length each time it is called if you wish by incrementing it as it
is in SQUARAL.

{Sgr}
NOTE: Be sure the variable you test in your procedure will eventually reach the test
value. For example, in our first version of DESIGN, :TIMES would never have reached 0
if it had started out negative. The first one, in fact, will also fail with a decimal such as
10.3.

G-50 Commodore 64 Logo Tutorial

Graphics

If you don't happen to think of this possibility, the procedure may go on and on and on
and you won't know why.

This is a common problem in writing procedures: the computer always does what you tell
it to do, whether or not it's what you want it to do. BUGS creep into the procedures of the
best of programmers.

{Rgr}
Bugs can be fun. You can learn from them, and sometimes what the computer does is
more interesting than what you had intended.

Projects: Testing and Stopping

1. Try replacing the 45 in RT 45 with something that depends on :TIMES, such as 4
* :TIMES.
2. Write a procedure to draw a tower of smaller and smaller squares, choosing the
number of squares when you run it.
3. In DESIGN, change the input for RT to a variable. (Remember to add the variable
name to the procedure title)

Using the Full Power of Recursion

-
To see Logo execute procedures step by step, use TRACE, described in the section on
debugging in this chapter and the Appendix.
-

The results of the recursive procedures shown so far could have been achieved with non-
recursive procedures. Each one so far has done something and then called itself to do
essentially the same thing again. Except for DESIGN, the procedures did not stop by
themselves, so they never had the chance to return to the top level.

The power of recursion, and what makes it different from iteration (repetition), is its
ability to come back from the last call to itself (called the deepest or lowest level),
finishing a job at each level as it returns.

This will be a new concept to many. Logo is one of the few computer languages with this
capability.

Commodore 64 Logo Tutorial G-51

Graphics

The following comparison will illustrate this:

TO COUNT.ONE :NUMBER
IF :NUMBER > 2 STOP
PRINT :NUMBER
COUNT.ONE :NUMBER + 1

END

TO COUNT.PLUS :NUMBER
IF :NUMBER > 2 STOP
PRINT :NUMBER
COUNT.PLUS :NUMBER + 1
PRINT :NUMBER

END

COUNT.ONE works in the same way as DESIGN. Type

COUNT.ONE 1 and Logo will respond
1
2

Small numbers are used to permit full step-wise explanation.

COUNT.PLUS, as its name suggests, does more. This is what happens when you type

COUNT.PLUS 1

1. Logo tests to see if :NUMBER (1) greater than 2.
2. Logo prints :NUMBER (1).
3. Logo calls COUNT.PLUS :NUMBER + 1 (2).
4. (The last statement, PRINT :NUMBER, is not executed.)

COUNT.PLUS 2

1. Logo tests to see if :NUMBER (2) > 2.
2. Logo prints :NUMBER (2).
3. Logo calls COUNT.PLUS :NUMBER + 1 (3).
4. (The last statement, PRINT :NUMBER, is not executed.)

G-52 Commodore 64 Logo Tutorial

Graphics

COUNT.PLUS 3

1. Logo tests to see if :NUMBER (3) > 2.
2. Logo stops and returns control to the procedure that called
COUNT.PLUS 3, which was COUNT.PLUS 2.

COUNT.PLUS 2

5. Logo executes the next statement in COUNT.PLUS 2, which is PRINT
:NUMBER. Prints 2.
6. Logo stops and returns control to the procedure that called COUNT
.PLUS 2, which was COUNT.PLUS 1.

COUNT.PLUS 1

5. Logo executes the next statement in COUNT.PLUS 1, which is PRINT :NUMBER.
Prints 1.
6. Logo stops and returns control to the procedure that called COUNT.PLUS 1, which
was the main Logo command level.

The diagram shows how all copies of COUNT.PLUS exist at once, each with its own
private value for :NUMBER.

COUNT.PLUS COUNT.PLUS COUNT.PLUS

NUMBER 1 NUMBER 2 NUMBER 3

IF NUMBER > 2 STOP IF :NUMBER > 2 STOP IF NUMBER > 2 STOP

PRINT NUMBER PRINT NUMBER

COUNT.PLUS :NUMBER + 1 COUNT.PLUS :NUMBER + 1

PRINT NUMBER PRINT NUMBER

prints 1 prints 2 just stops
and stops and stops

{In the above diagram, Column 1 Line 5 has an arrow up to C2 L1, C2 L5 arrows to C3
L1, C3 L7 arrows to C2 L8, and C2 L8 arrows to C1 L8.}

The process of recursion is based on one idea:

{Sgr}
When a procedure (A) calls another procedure (B), the calling procedure (A) puts on hold
any instructions which come after the call. When the procedure (B) which is called, stops,
the calling procedure (A) continues with the rest of its instructions after the call to (B).

Commodore 64 Logo Tutorial G-53

Graphics

What makes recursion so powerful is that this idea applies also to (B) and any procedure
(B) calls, and any procedure that THAT procedure calls. ..

And all of these copies of the procedure co-exist, each with its private portfolio of values.
All copies are used and exist as if they were completely different procedures.

An excellent example is the procedure SQS which produces squares with halfsize squares
on the corners:

{Xgr}
TO SQS :LENGTH

IF :LENGTH < 5 THEN STOP
REPEAT 4 [FD :LENGTH SQS :LENGTH/2 RIGHT 90]

END

TO SQR :LENGTH
IF :LENGTH < 5 STOP
REPEAT 4 [FD :LENGTH RT 90]
SQR :LENGTH/2

END

Note that the only difference between SQS and SQR is the placement of the recursive
call.

The procedure EXPONENT in the Computation chapter and the procedure TET on the
Utilities disk (see the APPENDIX) are two other examples of good recursive procedures.

Recursion Projects

1. Write a set of procedures which draw successively smaller houses. Use subprocedures
for the parts of the house.
2. Write a procedure to draw a binary tree. A binary tree is a v-shape with a smaller v-
shape on each tip. Develop the procedure for the basic V, then determine where in the
procedure you would insert a recursive call to itself to draw a smaller tree. To stop the
procedure, use a test similar to the one used in SQS.
3. Write a procedure that draws a series of successively larger fish, each totally within the
next larger.

G-54 - Commodore 64 Logo Tutorial

Graphics

Special Effects and New Utilities

{Rgr}
-
Since Logo lets you use primitives and procedures the same way, you can build your own
file of new primitives, utility procedures that do the special things that you want to do.
This might even include procedures like C which has the single command CATALOG,
simply to save typing...
-

If you can change a color once, you can change it again, both background and pencolor.
You can make the change once in a great while, or you can flash from one to another.

Here's a flashy example (NOTSQ is not quite a square)

TO NOTSQ
REPEAT 4 [FD 85 RT 85]

END

TO FLASH.NOTSQ
PC 3
BG 0 NOTSQ
BG 1 NOTSQ
BG 2 NOTSQ
FLASH.NOTSQ

END

FLASH.NOTSQ sets the pencolor to 3, the background to black, and runs NOTSQ, four
lines that don't quite meet. The background changes to white, four more lines are drawn,
the background changes to red, four more lines, then the whole procedure repeats
endlessly.

RANDOM Numbers, Numbers from Arithmetic Operations, Inputs, Outputs

The Logo primitive RANDOM will give you a number, chosen at random from the group
you specify. You specify the group from 0 to your number by giving RANDOM the next
higher number. For instance, RANDOM 16 will choose a number from 0 to 15 (just what
PC and BG need).

Commodore 64 Logo Tutorial G-55

Graphics

{Egr}
The number RANDOM chooses is called its OUTPUT. If you type RANDOM 16 at the
keyboard, Logo will respond with RESULT: 4 (or some other number from 0 to 15), just
as it printed RESULT: 90 when you typed 360/4. Both RANDOM and the arithmetic
operation produce a result, that is, they each put out a number, which is called an
OUTPUT.

The number RANDOM uses is its INPUT. You can never leave out an input: the
command needs it to work. On the other hand, in IMMEDIATE mode, Logo will print an
output as a RESULT sometimes. However, any time Logo expects to go on, as in a
procedure or a REPEAT command, it needs to know what to do with that output. Try
typing

REPEAT 4 [RANDOM 8]

and Logo will complain.

This is equivalent to typing

REPEAT 4 [5]

Give RANDOM's OUTPUT to something that requires an INPUT (such as FORWARD
or PRINT), and you are in business:

REPEAT 4 [FORWARD RANDOM 8]

It works!

To make the turtle's pen or the background take on a random color, use RANDOM 16
instead of the number. FLASH.NOTSQ could now be

TO FLASH.NOTSQ
PC 3
BG RANDOM 16
NOTSQ
FLASH.NOTSQ

END

(You have the choice of editing the old FLASH.NOTSQ or typing ERASE
FLASH.NOTSQ and typing the new version.)

G-56 Commodore 64 Logo Tut

Graphics

Here FLASH.NOTSQ sets the pencolor to blue, picks a random background color, runs
NOTSQ, then does the same three steps again and again until you stop it.

To avoid using black (color 0), use 1+ RANDOM 15. This gives you a random number
from 1 to 15 because 1 is always added to a random number from 0 to 14.

Try adding this line to one of your procedures:

BG 1 + RANDOM 15

Note that the number used with BG (BACKGROUND) is the result of an arithmetic
operation again, addition this time. Recall that some of the turns in your shape procedures
were calculated by division.

Any time a number is required in Logo, it can be given as the result of an arithmetic
operation. In Logo, use + and - for addition and subtraction (as usual), the slash (/) for
division, and the star (*) (or asterisk) for multiplication. There are rules you need to know
if you use more than one operator (+ -/*) at a time; see the COMPUTATION chapter for
details on the order of computation.

Projects Using Random

1. Substitute FORWARD RANDOM 100 for the side in SQUARE3.
2. Write a REPEAT statement using a FORWARD command and a random turn from 0
to 360 degrees.
3. Write a recursive procedure using a FD command and a random turn between 90 and
180 degrees.
4. Try some other ranges for turns; choose the most interesting to keep as a procedure.

Debugging by Printing Values: PRINT (PR)

{Egr}
Logo is one of the easier computer languages to debug (get rid of the errors, called bugs)
because large programs are composed of small procedures. It is a lot easier to debug a
small procedure than a long, complicated program. Always make sure your procedures
are debugged (run correctly by themselves) before you use them in other procedures.

Commodore 64 Logo Tutorial G-57

Graphics

TO DESIGN :TIMES :LENGTH
IF :TIMES = 0 THEN STOP
SQUARE :LENGTH
RT 45
DESIGN :TIMES - 1 :LENGTH

END

In DESIGN, if you type

DESIGN 6.5 100

the procedure will never stop.

To find out why, we want to check out :TIMES. It would be nice to print it out each time
around.

Use the Logo PRINT (PR) command to check on the value of :TIMES. Type

TO DESIGN

and add this line (in EDIT mode) just before the test (before IF...):

PR :TIMES

(You can remove it after you have debugged the procedure.)

DESIGN now looks like this:

TO DESIGN :TIMES :LENGTH
PR :TIMES
IF :TIMES = 0 THEN STOP
SQUARE LENGTH
RT 45
DESIGN :TIMES - 1 :LENGTH

END

Type <CTRL> C or <RUN/STOP> to leave EDIT mode, then type

DESIGN 6.5 100

G-58 Commodore 64 Logo Tutorial

Graphics

As it runs DESIGN, Logo will draw the design in the graphics part of the splitscreen, and
will print the values of :TIMES on the four lines of the text part of the screen.

Because the values are not whole numbers, if you look quickly, you will see them get
smaller and smaller and then become negative and get larger and larger. In other
words, :TIMES has passed zero and skipped the test because :TIMES was never exactly
zero.

Now you know that the bug is in the test that failed to account for this possibility. You
can either change the test (IF :TIMES < 0 THEN STOP) or add another test. The best
thing to do is change the test, since two tests are not really necessary. However, when
you change the test, be sure to try out DESIGN with every possibility you can think of.
ALWAYS test your procedures using all of the possibilities you can think of.

Debugging Using PAUSE: <CTRL> Z, CONTINUE (CO)

PAUSE or <CTRL> Z stops a procedure in such a way that you can start it again. While
it is stopped, you can find out where the (hidden) turtle is by typing SHOWTURTLE (or
ST), hide the turtle with HT, print the procedure out with PO, PRINT variable values, or
do a number of things to help you debug your program. You can use any primitive or
procedure during a pause.

To resume running the procedure, type CONTINUE (or CO).

Negative Inputs

There is also another possibility: remember that friend of yours who likes negative
inputs? What happens to DESIGN if :LENGTH is negative? What happens to :TIMES?
What happens to the friend?

Well, if :LENGTH is negative, the turtle just backs around in the opposite direction.
Logo knows all about negative lengths.

Commodore 64 Logo Tutorial G-59

Graphics

And the friend? Unless he knows how to give that negative input, Logo will give him a
(no doubt helpful) error message.

{Sgr}

A negative input for the second variable must be in parentheses to show that it is an input
and not a number to be subtracted from the first variable, for, as you will recall, inputs
can be the results of arithmetic operations. Type

DESIGN 5 (-100)

Let's set up a situation where the size of the turn between squares depends on the number
of :TIMES the square is drawn, so we can have a complete design. To do this, we replace
the 45 with 360 / :TIMES.

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT 360/:TIMES
DESIGN :TIMES - 1 :LENGTH

END

Now we have two things which depend on :TIMES. They are :TIMES itself, which must
always be positive, and the turn between squares, which could be either positive or
negative. A negative turn just goes around in the other direction.

How can we fix it so a negative number for :TIMES will give us a positive value
for :TIMES, but keep the negative turn?

To do this, we must write a procedure to test :TIMES, then call DESIGN with the
appropriate values. We also need to use a variable for the turn, so we can keep it negative
when :TIMES changes to positive. DESIGN becomes

TO DESIGN :TIMES :LENGTH :TURN
IF :TIMES < 1 THEN STOP
SQUARE LENGTH
RT :TURN
DESIGN :TIMES - 1 :LENGTH :TURN

END

G-60 Commodore 64 Logo Tutorial

Graphics

COMPLETE.DESIGN is the procedure which handles the details:

TO COMPLETE.DESIGN :TIMES :LENGTH
{IF :TIMES < 0 THEN

Type as one line { DESIGN -:TIMES :LENGTH 360/:TIMES

{ ELSE
{ DESIGN :TIMES :LENGTH 360/:TIMES

END

This is a one-line procedure, shown here on several lines for clarity. It must be typed as
one continuous line on your screen.

This says that if :TIMES is negative, change it to positive when you call DESIGN,
otherwise leave it alone. In both cases, :TURN uses :TIMES directly, so if :TIMES is
negative, :TURN is negative; if :TIMES is positive, :TURN is positive.

More on Debugging: TRACE, NOTRACE

{Rgr}
TRACE allows you to watch the execution of your procedure line by line. Logo
prints a statement, waits for you to type a character, then executes the statement. TRACE
also tells you when it is starting a subprocedure, and tells you what the inputs are.

In TRACE mode, type <CTRL> G, as usual, to stop a procedure. <CTRL> Z will make it
PAUSE; type CO (or CONTINUE) to resume. Type NOTRACE to stop tracing.

TRACE and NOTRACE may be used in a procedure to trace just a portion of it.

Commenting Your Program: ;

When you use a semi-colon in a program, anything that comes after it on the same line is
considered a comment. (Remember however that a line may wrap onto another line and
still be considered one line.) The comment is not evaluated or printed out when the
procedure is run. You only see it when the procedure is printed out.

Putting comments in a program makes it easier for other people to understand what is
going on. It also helps when you haven't used a program for a while and can't remember
exactly how it works.

Commodore 64 Logo Tutorial G-61

Graphics

More About the Turtle: DRAWSTATE, HEADING, SETHEADING (SETH),
TOWARDS

Logo primitives which give information about the turtle are useful for testing.
DRAWSTATE is a good example, giving a list of nine pieces of information. Type

DRAW DRAWSTATE and Logo will reply
RESULT: [TRUE TRUE 11 1 DRAW SINGLECOLOR SPLITSCREEN 14 6]

if 1. It is TRUE that the pen is down
2. It is TRUE that the turtle is visible
3. Background color is 11 (grey)
4. Pencolor is 1 (white)
5. Immediate mode is in DRAW mode
6. Color mode is SINGLECOLOR
7. Screen format is SPLITSCREEN
8. Text background color is 14 (light blue)
9. Text color is 6 (dark blue)

Word and List commands, FIRST, BUTFIRST, and ITEM can be used to test a member
of the list. For example, the background color is ITEM 3 DRAWSTATE. You can also
print the information, i.e. PRINT DRAWSTATE.

Logo uses HEADING for the direction the turtle is pointing. Type

HEADING and Logo will reply
RESULT: 45.007

or whatever number of degrees the turtle has turned to the right (clockwise) from facing
up.

PRINT HEADING, whether used in a procedure or not, will print the number alone. You
can use HEADING to stop a procedure after a turn. Example:

IF HEADING < 45 STOP

Use SETHEADING (SETH) to tell Logo what direction you want the turtle to face:

G-62 Commodore 64 Logo Tutorial

Graphics

SETHEADING 45

turns the turtle as if it had turned 45 degrees to the right from facing straight up.

To change the turtle's heading by a specific amount, you can use both:

SETHEADING HEADING + 5

will turn the turtle 5 degrees to the right. (Note that this is exactly the same as RIGHT 5.)

TOWARDS turns the turtle to face a point designated by its coordinates:

SETHEADING TOWARDS 100 (-100)

turns the turtle to face a point 100 turtle steps to the right (x = 100) and 100 turtle steps
down (y =-100) from the center of the screen. Note that here, too, the negative input is in
parentheses to avoid confusion with subtraction. Another way to write a negative second
input is to write it as zero minus the number. Example:

SETHEADING TOWARDS 100 0-100

Position When You Want It: XCOR, YCOR, SETX, SETY, SETXY

The screen is a grid, with X going across and Y going up and down. The HOME position
is where both x and y are zero. X gets larger to the right, Y gets larger going up. X is
negative to the left of HOME, Y is negative below it.

XCOR and YCOR give the X and Y coordinates of the turtle's position on this grid. Type
XCOR, YCOR, PRINT XCOR, or PRINT YCOR and Logo will print the X or Y
coordinate. You may also test against either:

IF XCOR = 150 STOP

Commodore 64 Logo Tutorial G-63

Graphics

To move the turtle to a specific coordinate position, use SETX, SETY, or SETXY. Only
the position will change; the turtle will not change its heading. Type:

SETX 100
to move the turtle across to x = 100

SETY 100
to move the turtle up or down to y = 100

SETXY 100 100
to move the turtle to the point x = 100, y = 100

SETXY 100 (-100)
to move the turtle to x = 100, y=-100

Use these commands together to move the turtle a specific distance:

SETX XCOR + 5

moves the turtle 5 steps to the right without changing its heading.

SETXY XCOR + 5 YCOR - 5

moves the turtle 5 steps to the right and 5 steps down, keeping the same heading.

SETXY is used in the Computation chapter to draw curves using their equations. To see
how to use SETXY with joysticks and paddles, see PADDLE in the Glossary.

INSTANT: Logo Turtle Graphics for the Non-reader

Your Logo Utilities disk contains a collection of procedures which makes Logo turtle
graphics accessible to young children. The INSTANT system uses single character
commands which are equivalent to longer Logo commands. You can use colored stickers
to identify the appropriate keys for use with INSTANT.

To use INSTANT, turn on the Commodore 64 with the Logo Language disk in the disk
drive. When Logo is loaded and displaying the question-mark prompt (?), put the Utilities
Disk in the disk drive and type

READ "INSTANT (with the ")

G-64 Commodore 64 Logo Tutor

Graphics

Logo will read in the file of procedures used by INSTANT, identifying each as defined.
The file has a variable called STARTUP which automatically starts the program. The
screen will display the commands used in INSTANT as follows:

F MOVES THE TURTLE FORWARD
R TURNS IT RIGHT
L TURNS IT LEFT
D DRAW (CLEARS THE SCREEN)
U UNDO (ERASES THE LAST COMMAND)
N NAMES THE PICTURE
P SHOWS A PICTURE, ASKS FOR ITS NAME.
C FOR CHANGING THE SCREEN COLOR
? GIVES HELP

PRESS ANY KEY TO CONTINUE.

When you press a key, the list goes away, the turtle appears, and the blinking cursor
moves to the lower left portion of the screen.

Type F to move the turtle forward. Turn the turtle with either R or L.

D restores the screen to its original condition, erasing the whole picture.

To erase just the last command, type U. Logo will redraw the picture without the most
recent command.

Animation Of A Sort

{Rgr}
U makes it possible to do some interesting animation, since every motion of the turtle is
relived in the redrawing, even though it is not visible in the finished drawing. For a
Lively Line, try typing

F R L L R F R L L R F R L L R U

The idea is to wave the turtle back and forth every once in a while, perhaps turn it
completely around; let it be indecisive about making a turn... It all comes out again when
you type the U.

To name a picture, type N and the name. (Names may be of any length, not just single
letters.) INSTANT will create a Logo procedure with that name, containing all the steps
that had been taken when N was typed.

Commodore 64 Logo Tutorial G-65

Graphics

To get a picture back, type P and its name. When the picture (actually a procedure) is
called using P, it is added to the current list of commands and becomes part of a new
procedure when N is next used. This allows you, using N and P, to do structured
programming. You can have procedures calling other procedures using just the one letter
INSTANT commands.

The following INSTANT session might look familiar. The letters below are INSTANT
commands. When actually running the program, the letters do not print out when you
type them. (Here we show the computer's responses in italics.)

F

F
R
R
R
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
BOX

If you leave INSTANT and print out the procedures SIDE and BOX, you can see that
they are basically the same procedures developed in the beginning of the graphics
section, except for minor changes such as three RIGHT 30 commands being used instead
of RIGHT 90.

Typing ? produces the menu again, without damaging the picture.

G-66 Commodore 64 Logo Tut(

Graphics

For disk storage of procedures created using INSTANT, you must leave INSTANT and
return to Logo:

1. Type <CTRL> G to return to Logo.
2. Type function key <fl> for the full screen of text (TEXT mode)
3. Type POTS to list the procedures you have created (plus the system proce
dures you saw defined as they were read in)
4. To write all of the listed procedures to your disk, put your procedure
storage disk in the disk drive, and type

SAVE "INSTANT

All the procedures listed will be written to your disk.
To save a picture on the disk, return to Logo with <CTRL> G and type SAVEPICT " and
the name you want for your picture. Example:

SAVEPICT "PUPPY

will save the picture on the screen under the name PUPPY on the disk. Type

INSTANT

to return to the INSTANT system.

In subsequent sessions using INSTANT, READ "INSTANT from your own disk instead
of the Utilities disk. You will have everything you need to run INSTANT as well as all
previously written original procedures.

If you only want the procedures created by INSTANT, you can use SAVE with two
inputs, a filename and the list of procedures. See the Saving Procedures section above
and SAVE in the Glossary.

You can easily modify INSTANT to provide more complex commands. To change
INSTANT, edit the COMMAND procedure.

Commodore 64 Logo Tutorial G-67

C - COMPUTATION:
HANDLING NUMBERS

The attempt has been made to make each chapter in the tutorial independent with no
other chapter as prerequisite. If, however, there are questions, consult the Graphics
chapter, which contains the most complete explanations.

{Egr}
Logo uses integers (whole numbers like 4, 67, 1918) and real numbers (numbers with a
decimal part like 4.55, 3.14159) without distinguishing between them. 7/2 (7 divided by
2) is always 3.5 in Logo.

Arithmetic Operations

In Logo, you must type arithmetic expressions on one line not spread out over two or
more like when you write them down on paper. For the operations of addition,
subtraction, multiplication, and division, Logo uses the following symbols:

as in
Addition + 7 + 5 (12)
Subtraction - 7 - 5 (2)
Multiplication * 7 * 5 (35)
Division / 7/5 (1.4)

The star (or asterisk *) is used for multiplication to avoid confusion with the letter x. The
slash (/) is used to keep division on one line.

Raising to powers (exponentiation) uses the procedure EXPONENT, described below.

Logo will do the arithmetic for you when you give it an operation for its input. When you
type:

FD 26 + 42 Logo will move the turtle 68 steps forward;

PRINT 76 * 42 Logo will print 3192;

RT 360/5 Logo will turn the turtle right 72 degrees.

Hierarchy of Operations

{Sgr}
Doing arithmetic on a line does present some problems, however. There must be rules
about which operation is done first. Try these:

PRINT (7 + 5)/ 2
PRINT 7 + 5 / 2

Commodore 64 Logo Tutorial C-1

Computation

In the first, the 7 and 5 are added, to make 12, then the 12 is divided by 2, which gives 6.
In the second, the 5 is divided by 2 first, with the result of 2.5, then the 2.5 is added to the
7, giving 9.5.

RULES THE COMPUTER PLAYS BY

{Egr}
1. Parentheses are the first thing the computer looks for in evaluating an arithmetic
expression. It does whatever is in the parentheses first, according to the rest of the rules.

2. Multiplication and division are done next, from left to right.

3. Addition and subtraction are done last, also from left to right.

If you have trouble remembering the order Logo uses, just think of "My Dear Aunt
Sally." Multiplication and division come before addition and subtraction. Examples:

{The following tables should be in a monospace font such as Courier}
1. 4 * 3 + 6 / 3 – 2 * (3 + 2)

Step 1 4 * 3 + 6 / 3 – 2 * 5
Step 2 12 + 2 - 10
Step 3 14 - 10
Step 4 4

2. 4 * (3 + 6) / (3 - 2) * 3 + 2

Step 1 4 * 9 / 1 * 3 + 2
Step 2 36 / 1 * 3 + 2
Step 3 36 * 3 + 2
Step 4 108 + 2
Step 5 110

3. 4 * (3 + 6) / ((3 – 2) * 3 + 2)

Step 1 4 * (9) / ((1) * 3 + 2)
Step 2 4 * (9) / (3 + 2)
Step 3 36 / (5)
Step 4 7.2

So you see, the order in which the operations are done can make a considerable
difference.

C-2 Commodore 64 Logo Tutorial

Computation

Outputs, Integer Operators, Functions: RANDOM, RANDOMIZE, ROUND,
INTEGER, QUOTIENT, REMAINDER, SQRT, SIN, COS

Arithmetic operations give a result, called an output. When you type an operation at the
keyboard, Logo will tell you that result. Type

24/3 and Logo will type

RESULT: 8

RANDOM is another Logo operation which gives a result. It chooses a random number
in the group you select. You specify the group by giving RANDOM the next higher
number.

Type Result will be
RANDOM 10 a number between 0 and 9;
RANDOM 501 a number between 0 and 500.

(Type RANDOMIZE before using RANDOM to avoid identical sequences of random
numbers every time you turn on the computer.)

The other integer operators also output. ROUND rounds off a real number to the closest
integer:

ROUND 6.4 outputs 6
ROUND 2.7 outputs 3
ROUND -6.4 outputs -6
ROUND -2.7 outputs -3
ROUND 6.5 outputs 7

INTEGER gives the integer portion of a real number:

INTEGER 4.3 outputs 4
INTEGER 4.9 outputs 4
INTEGER -4.3 outputs -4
INTEGER -4.9 outputs -4
INTEGER 7/2 outputs 3

QUOTIENT gives the integer part of the quotient of two numbers:

QUOTIENT 7 2 outputs 3
QUOTIENT 1 2 outputs 0
QUOTIENT -7 2 outputs –3

Commodore 64 Logo Tutorial C-3

Computation

Note that QUOTIENT :A :B is not always the same as INTEGER :A/:B, since
QUOTIENT rounds its inputs to the nearest integer.

REMAINDER outputs what is left over from the integer division:

REMAINDER 7 2 outputs 1
REMAINDER 2 3 outputs 2
REMAINDER 5 -2 causes an error

The error is caused because Logo considers 5-2 to be its first input and it can't find a
second input. There are two ways to get around this.

REMAINDER 5 (-2) outputs 1
REMAINDER 5 0-2

When you use real numbers with QUOTIENT or REMAINDER, they are ROUNDed to
integers before the division takes place. (This is the case with all Logo primitives which
require integer inputs.)

SQRT produces the square root of the positive number you give it:

SQRT 160 outputs 12.6491
SQRT 16 outputs 4

SIN and COS output the sine and cosine of the number given in degrees:

SIN 0 outputs 0
SIN 90 outputs 1
COS 0 outputs 1
COS 90 outputs 0

In a procedure you must do something with an output. If you don't, Logo complains that
you don't say what to do with it. You might PRINT it, assign it to a variable name, or use
it in a graphics command:

RT 360/4 the turtle turns right 90
MAKE "A 360/4 the value of A becomes 90
PRINT :A Logo prints 90
PRINT QUOTIENT 5 2 Logo prints 2
MAKE "B REMAINDER 5 2 :B becomes 1
PRINT :B Logo prints 1

C-4 Commodore 64 Logo Tutorial

Computation

Variables, Global and Local: MAKE, LOCAL

In Logo, you may use a variable anywhere you can use a number.

{Egr}
Variable names in Logo may be of any length, made up of any combination of letters,
numbers, or the special characters !",#$%&.? which leaves out only the operators,
brackets and parentheses, and the single quote.

{Egr}
The name of the variable is preceded by the single set of double quotes The value of the
variable is preceded by dots (:, also known as colon).

Global Variables:

The Logo primitive MAKE gives a value to a variable which the variable keeps until it is
changed with another MAKE command. MAKE can be used either in IMMEDIATE
mode or in a procedure. The value assigned is used in any procedure in which the
variable is used and it is stored when a copy of the workspace is saved. Variables created
with MAKE are called Global Variables. (There is an exception: If you use MAKE on a
variable name which is an input to the current procedure (or the procedure which called
the current procedure...) it will change the value of the input variable, rather than creating
a global variable.) Examples:

MAKE "PI 3.14159 gives the variable :PI the value 3.14159

PRINT :PI prints 3.14159

MAKE "MINE "MINK gives :MINE the value MINK

PRINT :MINE prints MINK

MAKE "A :PI gives :A the VALUE of :PI (3.14159)

PRINT :A prints 3.14159

Local Variables:

{Sgr}
Local variables are used only in procedures. When the procedure is running, the variable
has a value. When the procedure stops, the variable no longer exists until it is given a
value the next time the procedure is run. An input to a procedure behaves as a local
variable.

Commodore 64 Logo Tutorial C-5

Computation

You can also make a variable local to the current procedure with the LOCAL command:
Any time MAKE is used after the command LOCAL, the variable is treated as a local
and not a global variable. See the following two sections on procedures for examples.
Also see the Glossary for a more complete description of LOCAL.

-
Local variables are important because they keep the workspace from becoming cluttered.
Using global variables when local variables would do, wastes memory space that could
be used for other purposes. Also, you can have several local variables with the same
name in different procedures, but only one global variable with that name.
-

Procedures: TO, END

Any command you can type at the keyboard can be used in a Logo procedure. To define a
procedure, type TO and the name you have chosen. For example, type:

TO CUBE (to cube a number means to multiply it by itself 3 times)

{Sgr}
The screen will clear, with the procedure title TO CUBE at the top and a white line at the
bottom which tells you that you are in EDIT mode and should use <CTRL> C (or
<RUN/STOP>) to complete the definition of your procedure. (<CTRL> G means gone.)
(To do a <CTRL> C, hold down the <CTRL> key and press the <C> key.)

Type in the rest of the procedure below, and press <CTRL> C. (See the APPENDIX for a
discussion of commands used in EDIT mode.)

TO CUBE
PRINT 4 * 4 * 4

END

Type

CUBE Logo will print 64

C-6 Commodore 64 Logo Tutorial

Computation

You can use a variable to extend the usefulness of this procedure. Make it print the cube
of whatever number is given it, instead of printing the cube of 4 all the time. Replace

each 4 with the variable name and add it to the title, so the value of the variable may be
brought into the procedure. You may choose any name for your variable; a descriptive
one is most helpful.

TO CUBE :NUMBER
PRINT :NUMBER * :NUMBER * :NUMBER

END

CUBE now expects a number. This means that you may not type CUBE by itself any
more. When you do, Logo will tell you that you forgot the input (:NUMBER).

Now when we type CUBE with a number, Logo will print the cube of that number.

Type Logo will print

CUBE 3 27
CUBE 33 35937
CUBE 333 36926037

After CUBE is run, Logo forgets the value of :NUMBER. Try typing

PRINT :NUMBER

:NUMBER is an input to a procedure. It acts as a local variable and has value only within
the procedure in which it is used. :NUMBER could be used in a variety of procedures and
have a different value in every one.

Interactive Procedures: LOCAL, REQUEST

LOCAL is useful when you don't want to use an input to your procedure, but still want to
use a local variable. This is frequently the case with interactive procedures, especially if
the procedure requires the user to input more than one variable. (An interactive procedure
is one that requires user input from the keyboard while the procedure is running.) As a
simple example of this, we start with a procedure which randomly picks two numbers and
prints their product.

Commodore 64 Logo Tutorial C-7

Computation

TO MULTIPLY
LOCAL "X LOCAL "Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10

(PRINT :X [TIMES] :Y [IS] :X * :Y)
END

LOCAL specifies that its input (in this case "X and "Y) will be treated as a local variable
for the rest of the procedure. The variable name is indicated by a leading quote mark. The
local variable has no value until MAKE is used to give it one. (To see this, put a
PRINT :X in between LOCAL and MAKE.) In the procedure, RANDOM is used to pick
a random value for the variables. The last line of the procedure PRINTs the variables and
their product as a part of a sentence.

-
PRINT usually takes one input which can be a word, a list, or a number. In this case it has
five inputs; the value of the variables :X,:Y; the product of :X*:Y; and two one item lists
which are denoted by the brackets. (What would happen if TIMES and IS were not in
brackets?) For Logo to know that there is more than one input, the command PRINT and
the inputs must be enclosed in parentheses. If you doubt our word, try it without the
parentheses and see what happens.
-

To make the procedure continue to pick variables and print the answers, add MULTIPLY
as the last line in the procedure just before END. Don't forget about <CTRL> G to stop it.
(The ability of a procedure to call itself is called recursion. For a more complete
explanation, see the following section, and also the discussion of recursion in the
Graphics chapter.)

We now have a procedure that is very good at picking numbers and telling us their
product, but we do not yet have an interactive procedure. There is no way for you to do
anything while the procedure is running. Let's change it so that you have to type in the
answer instead of the computer doing it for you. Right now, Logo will tell you the
answer, so that must be changed or there will be no challenge. The line with PRINT will
become

(PRINT [HOW MUCH IS] :X [TIMES] :Y)

C-8 Commodore 64 Logo Tutorial

Computation

Of course, we'll want Logo to tell us whether the answer we give is right or wrong. The
procedure listed below will do this for us and it can be used in MULTIPLY.

TO TESTANSWER ANSWER
IF :ANSWER = :X* :Y PRINT [CORRECT] STOP
PRINT [INCORRECT]

END

This is very simple. It asks if the value of the variable ANSWER is equal to the value of
X times the value of Y. If this is TRUE, it will print CORRECT and stop. If it is false, it
will go to the next line and print INCORRECT.

Now then, how do we combine the two procedures? If we add
TESTANSWER :ANSWER as the line after the PRINT statement in MULTIPLY which
asks how much X times Y is, where does :ANSWER come from?

To have a user input an answer, we need to use REQUEST. REQUEST takes input from
the keyboard and makes it into a list when <RETURN> is hit.

TO MULTIPLY
LOCAL "X LOCAL "Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10
(PRINT [HOW MUCH IS] :X [TIMES] :Y)
TESTANSWER FIRST REQUEST

END

As used here, REQUEST changes what you type (your ANSWER) into the input or
variable needed by TESTANSWER. Why does it have FIRST in between
TESTANSWER and REQUEST? Remember, REQUEST generates a list. (Essentially, a
list is anything enclosed in brackets.) In TESTANSWER we would be comparing a list
with a number and the answer would always be INCORRECT. What is needed is the first
(and only) item in the list, the number which you type in. Therefore, we use the Logo
command FIRST in conjunction with REQUEST.

Commodore 64 Logo Tutorial C-9

Computation

-
Note that the values of X and Y were not input to TESTANSWER, but were used by it. A
subprocedure has access to the values of the variables in the procedure or procedures
which call it, whether the values are passed through the procedure title or not. In its
present state, TESTANSWER could not run on its own, unless there were a global
variable for X and Y. In addition, if X and Y are not global variables, any procedure
which calls TESTANSWER must have X and Y as local variables or as inputs in the
procedure title.
-

So far, MULTIPLY and TESTANSWER could have been written as one procedure. But
what if we wanted to make the program keep asking for an answer until it was correct?
To do this, we need a recursive call to TESTANSWER so it will keep calling itself until
it receives the correct answer. What happens if you make the last line of TESTANSWER
be TESTANSWER :ANSWER? When you try this it obviously does not work! So we
need to change :ANSWER in the last line to something else. Hint: We have figured it out
previously.

Why all this fuss about local variables, whether created by LOCAL or as procedure
inputs? Global variables take up space. The less they are used, the more room there is to
do other things. Also, procedures which use global variables to store temporary results
will often not work properly when used recursively.

A note to teachers: The above procedures are the types of programs that students quickly
learn how to modify and create themselves, even in elementary school. They are not
meant to be an example of how to develop quizzes for students.

A note to students: If teachers try to make you learn addition facts with the above
procedures, fool them by editing the procedures to make them do something else.

Bringing Values Out of Procedures: OUTPUT (OP)

{Sgr}
When the results of running a procedure are to be used by another procedure, which often
happens when the purpose of a procedure is to do a computation, those results must be
brought out of the procedure for use.

C-10 Commodore 64 Logo Tutorial

Computation

There are two ways of getting values out of a procedure:

1. Create a global variable (described above).
2. Use the Logo primitive OUTPUT.

The Logo primitive OUTPUT returns values from the procedure in which it occurs. The
values are returned to the procedure which called that procedure.

If you run a procedure which uses OUTPUT, the procedure will print the output (result)
on the screen.

If you run a procedure which in turn calls a procedure that uses OUTPUT, only the
procedure you ran will receive the information from OUTPUT. It will not be printed
unless there is a PRINT statement.

This is similar to what happens when you do arithmetic operations. Type

3 + 5

and Logo will print

RESULT: 8

Type

FORWARD 3 + 5

and the result 8 only goes to the FORWARD

The turtle moves, but the 8 is not printed on the screen.

We can change the PRINT statement in CUBE to OUTPUT to show this:

TO CUBE1 :NUMBER
OUTPUT :NUMBER * :NUMBER * :NUMBER

END

Commodore 64 Logo Tutorial C-11

Computation

Now if you type

CUBE1 3

Logo will print

RESULT: 27

However, if you type

FORWARD CUBE1 3

the graphics turtle will move forward 27 steps. Compare this with

FORWARD CUBE 3

OUTPUT was not needed in TESTANSWER in the previous section because there was
no information that needed to be sent back to the procedure MULTIPLY or which needed
to be sent back to itself in a recursive call.

Example of OUTPUT and Recursion: A Procedure To Do Exponentiation

A recursive procedure is a procedure which calls itself as a subprocedure. The procedure
EXPONENT, shown below, uses recursion to raise :X to the power of :Y.

TO EXPONENT :X :Y
IF :Y = 0 THEN OUTPUT 1
OUTPUT :X * (EXPONENT :X :Y - 1)

END

In the procedure, Y is used as a counter to make sure that X is multiplied together the
correct number of times.

How EXPONENT works:

1. Tests for the finish, i.e. Y = 0
2. Multiplies :X by the result of running EXPONENT with the counter decremented.

1. Tests for the finish
2. Multiplies :X by the result of running EXPONENT with the counter
decremented, and so on until :Y is decremented to 0.

C-12 Commodore 64 Logo Tutorial

Computation

Example:

EXPONENT 3 4

We shall follow the recursion down through all its levels and then trace OUTPUT on its
way back up.

Going down, each level is put on hold pending the appearance of a number needed to
complete the computation. Coming back up, each number is output to the level above and
each computation completed.

Going down:

EXPONENT 3 4

1. Check to see if :Y (4) is 0
2. OUTPUT 3 * the result output by EXPONENT 3 3

Logo must figure out the value of EXPONENT 3 3.

EXPONENT 3 3

1. Check to see if :Y (3) is 0
2. OUTPUT 3 * the output of EXPONENT 3 2

Logo must figure out the value of EXPONENT 3 2.

EXPONENT 3 2

1. Check to see if :Y (2) is 0
2. OUTPUT 3 * the output of EXPONENT 3 1

Logo must figure out the value of EXPONENT 3 1.

EXPONENT 3 1

1. Check to see if :Y (1) is 0
2. OUTPUT 3 * the output of EXPONENT 3 0

Logo must figure out the value of EXPONENT 3 0.

Commodore 64 Logo Tutorial C-13

Computation

EXPONENT 3 0

1. Check to see if :Y (0) is 0; if it is, OUTPUT 1. OUTPUT
stops the procedure and outputs the value 1.

Going back up:

The 1 is output to the procedure which called EXPONENT 3 0, which was EXPONENT
3 1. This completes the evaluation in EXPONENT 3 1, which is output to the procedure
which called EXPONENT 3 1, which was EXPONENT 3 2. The process is repeated until
the top level is reached.

The evaluation of EXPONENT 3 4 on the way down looks like this:

EXPONENT 3 4 = 3 *(EXPONENT 3 3)
= 3 *(3 *(EXPONENT 3 2))
= 3 *(3 *(3 * EXPONENT 3 1))
= 3 *(3 *(3 *(3 * EXPONENT 3 0)))

Since the value output by EXPONENT 3 0 is 1, going back up, this becomes

EXPONENT 3 4 = 3 * (3 * (3 * (3 * (1))))
EXPONENT 3 0 outputs 1

= 3 * (3 * (3 * (3 * 1)))
EXPONENT 3 1 outputs 3
= 3 * (3 * (3 * 3))

EXPONENT 3 2 outputs 9
= 3 * (3 * 9)

EXPONENT 3 3 outputs 27
= 3 * 27

EXPONENT 3 4 outputs 81

The 3 is multiplied by itself 4 times, just as prescribed.

Note the use of :Y as a counter which makes sure that EXPONENT is called exactly 4
times, that is, 3 is multiplied by itself 4 times, or raised to the power of 4.

C-14 Commodore 64 Logo Tutorial

Computation

Graphing Functions: Sine, Cosine, Tangent, Parabola, Ellipse, SETXY, HOME,
DRAW, HT

It is easy to graph functions of the form Y = f(X) using the Logo primitive SETXY,
which takes as its inputs the :X and :Y positions on the Logo screen.

The heart of each procedure is the evaluation of :Y and the positioning of the turtle (f(:X)
is whatever the function calls for):

MAKE "Y f(:X)
SETXY :X :Y

This is more elegantly accomplished by combining the two operations. For example:

SETXY :X f(:X)

Principal considerations include

1. Keeping the curve on the screen
2. Positioning the curve
3. Scaling for visibility

To position the start of the curve, we might want to move :X to the left by the amount :C.
Our statement becomes:

SETXY :X - :C f(:X)

To see :Y if it is very small, we might want to multiply it by a visibility factor :D.

SETXY :X - :C f(:X) * :D

SINE FUNCTION: Y = SIN X

We would like to begin the sine wave at the left edge of the screen (- 155), make it large
enough to be visible, and stop at the right edge of the screen (+155).

Commodore 64 Logo Tutorial C-15

Computation

To begin drawing at the left edge and yet have :X start at 0 for the evaluation of :Y, the X
position becomes :X - 155.

To see :Y, which will vary between 0 and 1, multiply by 100 (actually anything up to
130, the vertical limits of the screen).

The procedure starts out as

TO GRAPH.SIN :X
SETXY :X - 155 100 * SIN :X

END

This computes one point and moves the turtle to it. To continue the curve, increment :X
by calling GRAPH.SIN with an incremented value:

TO GRAPH.SIN :X
SETXY :X – 155 100 * SIN :X
GRAPH.SIN :X + 5

END

To stop the curve at the right edge of the screen, insert a test for the X position (:X - 155).

TO GRAPH.SIN :X
IF :X - 155 > 155 STOP
SETXY :X – 155 100 * SIN :X
GRAPH.SIN :X + 5

END

To draw a sine wave starting at X = 0, type

GRAPH.SIN 0

An axis would improve the graph (DRAW clears the screen and moves the turtle to the
center, HT hides the turtle):

TO AXIS
DRAW
HT
SETXY 155 0
HOME
SETXY -155 0

END

C-16 Commodore 64 Logo Tutorial

Computation

Now to draw a sine wave with an X-axis, type

AXIS
GRAPH.SIN 0

The final improvement for the sine wave is writing a procedure to do that typing for us:

TO SINE
AXIS
GRAPH.SIN 0

END

Finally, to draw a sine wave, type

SINE

COSINE FUNCTION: Y = COS X

Substitute COS for SIN in the GRAPH.SIN procedure, changing its name to
GRAPH.COS. Write a superprocedure COSINE to call it with AXIS. The easiest way to
do this is to edit GRAPH.SIN and SINE. See the editing sections of the Graphics chapter
and the APPENDIX.

TANGENT FUNCTION: Y = (SIN X) / (COS X)

The tangent procedure has some different problems.

Note how :X is incremented slightly if COS :X = 0. This is to avoid dividing by 0. Since
we don't want to stop the procedure in the middle of the screen, PU (PENUP) is used to
stop the turtle from drawing when it is simply wrapping around the screen to get to the
off-screen points. (When the line goes off the edge of the screen, it continues by entering
on the opposite side of the screen. This is called wrapping.)

Using PU requires adding PD (PENDOWN) to start drawing again.

Commodore 64 Logo Tutorial C-17

Computation

TO GRAPH.TAN :X
LOCAL "Y
IF COS :X = 0 THEN MAKE "X :X + 1
IF :X - 155 > 155 STOP
MAKE "Y (SIN :X) / (COS :X)
IF 10 * :Y > 115 PU MAKE "Y 12
IF 10 * :Y < -115 PU MAKE "Y (-12)
SETXY :X - 155 :Y * 10
PD
GRAPH.TAN :X + 5

END

Here Y is evaluated separately because it must be tested before the drawing step. If 10*:Y
is greater than 120 or less than -120, the turtle will wrap and the turtle will be left at
random places on the screen. This will cause unwanted lines when Y comes back in the
range of the screen and the pen is put down, so Y is reset to the edge of the screen until
its value places it within the screen.

PARABOLA: Y = (X * X) / (4 * A)

The vertex of this parabola is at 0,0; the axis is vertical. A is the distance from the vertex
to the focus. Increasing A makes a wider parabola; decreasing it makes a narrower one.

The general formula for this parabola is

(X - H) * (X - H) = 4 * A * (Y - K)

where H is the X co-ordinate and K is the Y co-ordinate. H and K are 0 in this example.

In the drawing of the parabola, add PU after AXIS to avoid leaving a trail to the
beginning of the curve. (This is the same AXIS procedure that is used in the sine
procedure.)

C-18 Commodore 64 Logo Tutorial

Computation

Determine the beginning point in the superprocedure PARABOLA, using the equation
again, with 118 the value for Y (about the largest possible value for Y).

TO PARABOLA :A
AXIS
PU
GRAPH.P (- SQRT (118 * 4 * :A)) :A

END

TO GRAPH.P :X :A
LOCAL "Y
MAKE "Y (:X * :X) / (4 * :A)
IF :Y > 124 STOP
SETXY :X :Y
PD
GRAPH.P :X + 5 :A

END

With a positive value for :A, this will draw a parabola above the X axis. To allow use of a
negative :A, which would draw a parabola below the X axis, we must use the absolute
value of :A (:A without its sign) in calculating the starting position of X, since we cannot
take the squareroot of a negative number. We write the procedure ABS to figure the
absolute value for us:

TO ABS :X
IF :X < 0 THEN OUTPUT -:X
OUTPUT :X

END

OUTPUT stops after it outputs. So if an X is negative, it will change it to positive; if it is
positive, it will output it directly. PARABOLA becomes:

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT (118 * 4 * ABS :A)) :A

END

Commodore 64 Logo Tutorial C-19

Computation

Since it is a test for Y that stops the procedure, we must revise the test to allow for a
negative Y (See the Glossary for a description of ANYOF):

TO GRAPH.P :X :A
LOCAL "Y
MAKE "Y (:X * :X) / (4 * A)
IF ANYOF (:Y > 124) (:Y < -124) STOP
SETXY :X :Y
PD
GRAPH.P :X + 5 :A

END

To make a family of parabolas, add a recursive call to PARABOLA (taking care to pick
up the pen in between). You will also have to remove the DRAW primitive from AXIS.

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT(118 * 4 * ABS A)) :A
PU
PARABOLA :A + 1

END

ELLIPSE FUNCTION:
Y = B * SQRT (1 - (X * X) / (A * A))

The center of this ellipse is at 0,0. A is half of the horizontal axis, B is half of the vertical
axis.

The general formula for an ellipse is

(X - H) * (X - H) / (A * A) + (Y - K) + (Y - K) / (B * B) = 1

where H,K are the X and Y co-ordinates of the center, (0,0) in this example.

The ellipse procedure must solve the problem of Y becoming negative as X returns to its
original value. Changing the sign of the increment takes care of it.

C-20 Commodore 64 Logo Tutorial

Computation

TO GRAPH.ELLIPSE :X :A :B :INC
IF (:X * :X) > (:A * :A) STOP
IF :X = :A THEN MAKE "INC (-:INC)
SETXY :X :INC * :B * SQRT (1 - (:X * :X) / (:A * :A))
PD
GRAPH.ELLIPSE :X + :INC A :B :INC

END

The SETXY command must be typed as one line. Use the same AXIS program as you
used with the sine procedure.

TO ELLIPSE :A :B
AXIS
PU HT
GRAPH.ELLIPSE -:A :A :B 1

END

To speed the drawing of the ellipse change the increment to 2. In ELLIPSE, the 1
becomes a 2 in the third line. In GRAPH.ELLIPSE, SETXY etc. becomes SETXY :X*2
etc.

Commodore 64 Logo Tutorial C-21

W - WORDS AND LISTS

INTRODUCTION

So far, all of the procedures that we have described or encouraged you to write have been
non-interactive. That is, once you started them, they did what they were designed to do

without consulting you further. The most you might ever have done was press <CTRL>
G to stop them.

Interactive programs are perhaps the most fun of all, precisely because they interact.
They are also, potentially, the most complex. The reason for this is that while they are
underway, they must account for the unpredictable behavior of the person with whom
they are interacting.

Interactive movement is the basis of a variety of video games and simulations. Interactive
language can not only add attractive features to these games, but can open up a whole
new interest area: mad-libs, quizzes, word-games, conversational programs that construct
grammatical sentences and "understand" limited amounts of natural language, even
foreign languages.

There are two ways you can approach this chapter. You may prefer to go quickly
through, skipping all of the (large quantities of) indented text and come back to it later, or
you may wish to study those portions as you work your way through the chapter. As in
other chapters, the indented portions add depth and detail to the presentation.

{Egr}
The procedures you are asked to type in are used throughout the chapter, so be sure to
save them on your disk when you decide to take a break, and be sure to read them back in
when you start to work on the chapter again. (CHAPTERW would be an appropriate file
name, so you can type SAVE "CHAPTERW and READ "CHAPTERW.)

In the graphics chapter, you learned about procedures which had an immediate and
visible effect. FD moved the turtle (and left a trace on the screen if the pen was down),
DRAW cleared the screen, and so on.

This meant that even without writing procedures, you were able to give Logo several
commands in succession and see what their combined effect was. You may even have
forgotten what commands you used, but the screen "remembered" their effect.

Commodore 64 Logo Tutorial W&L-1

Words and Lists

Procedures spared you considerable typing. They also gave you a way of recording the
instructions for your designs. But the designs themselves didn't depend on the
procedures. They would have grown just as surely on the screen if you typed each turtle
command line by line.

In this chapter, you will be learning about primitives that manipulate Logo "objects." The
effects of these primitives are not graphic and do not accumulate unless you explicitly
instruct them to.

These primitives can be explained and used one by one, but their real power is most
apparent in combination. As a result, the focus of this chapter must be on building
procedures which combine these primitives in different and varied ways.

Even though there are only roughly a dozen important new primitives, and even though
only about half are used with much frequency, there are many, many combinations which
can be used in creating sophisticated and interesting programs.

Here are some of the programs that you will learn how to write in this chapter:

- Interactive video programs
- Quiz programs
- Programs that write and "understand" language
- Programs that play games
- Programs that learn

Logo's facility with words and lists makes it ideal for writing conversational programs,
quizzes, pig-Latin translators, programs that teach, and even programs that learn: in short,
all programs that need to manipulate lists of information.

The chapter is divided into three sections. The first is devoted entirely to interactive video
programs, but introduces some procedures and techniques that are used in the remainder
of the chapter.

The second section is devoted to programs that manipulate language (quizzes, sentence
generators, etc.) and programs that build and manipulate knowledge bases.

The third section is devoted to building and manipulating knowledge bases, and includes
programs that play games and that learn.

W&L-2 Commodore 64 Logo Tutorial

Words and Lists

Interactive Graphics: READCHARACTER (RC), TOPLEVEL, STOP

Let's create a program to control the turtle with single key-presses at the keyboard. The
initial design will provide only four turtle behaviors, FD, RT, LT, and DRAW, and will
control them with F, R, L, and D, respectively.

-
Projects at the end of this section suggest some additional behaviors to control. Further
additions will become possible with techniques that you will learn later in this chapter.

The procedures that you will be developing are similar to those in the INSTANT program
on your utilities disk. This program is explained further in this guide.
-

In this design, the turtle will be moved Forward 10 steps each time the F is pressed. Each
time R or L is pressed, the turtle will turn Right or Left 15 degrees. (You may choose any
amount, of course, not just what is suggested here.) Pressing D executes DRAW.

The first task is to create a procedure that takes a single character as input and controls
the turtle on the basis of that character. Its title line might be:

TO EASYDRAW :CHARACTER

or to save typing

TO EASY :CHTR

The logic is quite simple. If the character is an F, then perform FD 10. In Logo, this is:

IF :CHTR = "F FD 10

-
{Rgr}
If you prefer, you can add the word THEN, and write

IF :CHTR = "F THEN FD 10

Some people find it easier to read a program that has the extra word in it. Others find it
more cluttered that way. We will leave it out in this chapter.
-

Commodore 64 Logo Tutorial W&L-3

Words and Lists

Similarly, if the character is an R, perform RT 15.

IF :CHTR = "R RT 15

There should be some way of telling the program when we want to quit drawing to do
something else. The letter Q (for Quit) can be used. If that character is the input, the
procedure will perform NODRAW and TOPLEVEL.

NODRAW gets out of draw mode and clears the text screen. TOPLEVEL is the Logo
primitive that tells Logo to stop executing a program and return to immediate mode to
wait for a new command.

-
{Sgr}
It is important to know the difference between TOPLEVEL and STOP. STOP stops the
execution of the procedure in which it is found, but does not stop other procedures that
may also be running. TOPLEVEL stops an entire program. Every procedure that Logo
was running stops, and Logo returns control to the user.
-

The whole procedure might look like this:

TO EASY :CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "Q NODRAW TOPLEVEL

END

Define this procedure. Type carefully, making certain that no spaces are left between the :
and the word CHTR, or between the double-quote character and the single letter that
follows it. Notice also that there is only one double-quote character on each line.

-
{Egr}
We will explain in greater detail later, but provide this brief version for the curious. The
words

"F in IF :CHTR = "F FD 10
"CHAPTERW in SAVE "CHAPTERW

are quoted in order to tell Logo not to treat them as procedures.

W&L-4 Commodore 64 Logo Tutorial

Words and Lists

The words FD and SAVE are executed by Logo, but we want "F to be just plain F,
literally, and not have Logo try to execute it as an instruction. Similarly, we want
"CHAPTERW to be the name of a file - just a name, not something to do. The quoted
word ends at the next blank space, so no final quote is needed.

Do not add a final quote, since Logo will then assume you mean to say something like:
If the character is an F followed by a double-quote-mark, then... This is not at all what
you want.

To demonstrate this, type

PR "A"
-

After the procedure is defined - remember to type <CTRL>C - you can try it out by
typing

EASY "F
EASY "R
EASY "Q

This is definitely not an improvement over typing FD 10 RT 15 ND, but it contains all
the logic for the program we intended to create. Now what is needed is another procedure
- let's call it QUICKDRAW - whose sole purpose is to wait for a key to be pressed at the
keyboard and to give that character to EASY as an input.

QUICKDRAW will use the Logo primitive READCHARACTER, abbreviated RC, to
report what key has been pressed at the keyboard. To make QUICKDRAW continue
endlessly (until a Q is pressed), QUICKDRAW calls itself as a subprocedure and looks
like this:

TO QUICKDRAW
EASY RC
QUICKDRAW

END

Commodore 64 Logo Tutorial W&L-5

Words and Lists

The line EASY RC in QUICKDRAW tells Logo to read a character typed by the person
using the computer and to use that character as the input to EASY. EASY figures out
what action to perform based on what character it receives. If it gets an R, it performs a
RT 15.

Even though all five lines of EASY are executed each time EASY is called, at most one
action will be taken, because only one of the IF tests will be true.

Projects with RC: Extending QUICKDRAW

1. By using the same logic you can add other commands to EASY. Teach the procedure
how to control the pen (PU or PD) in a single keystroke. (You might assign U to the
command PU and P to the command PD, or you might choose D for PD, in which case
you would need something else for DRAW.)

2. Add SHOWTURTLE (ST) and HIDETURTLE (HT).

3. Teach EASY to change the pen color with two keystrokes. The first keystroke (C, for
Color) will run a procedure that waits for a second keystroke. If that second keystroke is
a 0 through 9, the pen will be set to that color. If any other key is pressed, nothing
happens.

The job could, of course, be done with one keystroke, representing each pen color with a
different key. You might use the number keys directly, or use letters that represent the
color names (for example, W for White, G for Green, etc.).

A disadvantage of using the numbers is that it would be nice to have them available for
use as "multipliers" to multiply the effect of the next command. You will learn a
technique for doing this in the next section. Choosing letters for each color is acceptable,
although it requires that a person remember codes for each color.

4. Use the same technique to change background color.

W&L-6 Commodore 64 Logo Tutorial

Words and Lists

Changing the Value of a Variable: MAKE, PRINT (PR)

We must take a short detour from the QUICKDRAW program. When you return to it,
you will be able to write procedures which allow multiples of the single key commands
in EASY. For example, 3F will make the turtle go forward 3 * 10 or 30 turtle steps.

The Logo primitive MAKE is used in several ways. In this section, we will illustrate one
way, and in another section of this chapter, when we define words, lists, variables, input,
and output more carefully, you will learn more of the subtleties of MAKE.

A metaphor for MAKE: When you say

MAKE "NUM 7 or
MAKE "PERSON [MARGARET TRUMAN]

{Rgr}
it is as though you are creating locations or boxes called NUM and PERSON and tossing
a 7 into the first and the list [MARGARET TRUMAN] into the second. To find out what
is in a particular box called NUM, the Logo command is THING "NUM or, more
commonly, just :NUM, meaning the thing or value that is in the box named NUM.

Of course, you have been using names to refer to values all along. We will use the new
metaphor to translate a procedure in a new way.

TO FIGURE :LENGTH :SIDES
REPEAT :SIDES [FD :LENGTH RT 360/:SIDES]

END

This procedure tells the turtle how to draw a polygon whose features will be found in
boxes that the procedure refers to as LENGTH and SIDES. The procedure's first
instruction is to look in its SIDES box for a number, and REPEAT the following list of
commands that number of times - go FORWARD the dimension found in its LENGTH
box, and turn RIGHT however many degrees is equal to 360 divided by the number it
found in the box named SIDES.

Commodore 64 Logo Tutorial W&L-7

Words and Lists

At the moment that you type

FIGURE 73 4 or FIGURE 15 6

Logo puts the 73 or 15 in a location (think of it as a box) that the FIGURE procedure
refers to as LENGTH and puts the 4 or 6 into another location that FIGURE refers to as
SIDES.

{Egr}
It is important to remember that LENGTH and SIDES are names that FIGURE
uses to keep track of these numbers, and that no other procedure knows what
FIGURE keeps in the boxes or even that the boxes exist! Further, those boxes cease to
exist after FIGURE finishes its work.

-

Please note, however, that if FIGURE had called any subprocedures during its execution,
those subprocedures would also have had access to the values in FIGURE's boxes.
-

Before getting back to MAKE, define FIGURE as shown above and then type

FIGURE 50 5

While FIGURE is operating, it executes the command FD :LENGTH, telling FD to move
the turtle forward 50 turtle steps, the number of steps in the box LENGTH. If the 50 is
still left in the box after FIGURE has finished drawing its pentagon, you should still be
able to use it.

Try typing FD :LENGTH to see what Logo will do. Your screen should look like this:

FD :LENGTH
THERE IS NO NAME LENGTH

Now back to MAKE. MAKE can assign a value to a box or change the value that is in the
box, and it can do it equally well in or out of a procedure.

Type MAKE "LENGTH 10 to create a box named LENGTH and place a 10 in it. Type
DRAW to clear the screen, and then type FD :LENGTH. The turtle will move forward 10
turtle steps. Type

W&L-8 Commodore 64 Logo Tutorial

Words and Lists

RT 144 FD :LENGTH

This box did not disappear. It still exists and still has a 10 in it. Type

PRINT :LENGTH

Logo should print 10.

-
This kind of variable, defined outside of a procedure, is called a Global variable. See the
explanation of global and local variables in the chapter titled Computation.
-

Since there is already a box called LENGTH and it has a 10 in it, you might think that
you could now type just FIGURE 4 to get a four-sided shape with a size of 10.

If you try that, Logo will complain that FIGURE needs more inputs. Because FIGURE
was defined to take two inputs, it must always be given two inputs.

Type

FIGURE 50 4

When it executed FD :LENGTH, how far did the turtle move? Not 10, but 50. And now
that the square is drawn, type

FD :LENGTH

How far did the turtle move this time? Not 50, but 10. Type PRINT :LENGTH to Logo.
Again Logo should print 10.

A summary of what happened: You told Logo to MAKE "LENGTH 10. Both before and
after running FIGURE (with its own variable of the same name set to 50), you were able
to show that LENGTH really did have the value 10. Whether you typed
PRINT :LENGTH or FD :LENGTH, LENGTH represented 10.

Commodore 64 Logo Tutorial W&L-9

Words and Lists

However, FIGURE, even though it had a variable of the same name, did not seem to
know about the 10 and did not change it to 50, even though that is what FIGURE
considered LENGTH to be.

Until you have had a chance to write enough procedures and have had more experience
with variables and values, they tend to remain confusing, but remembering one principle
may help.

When a procedure has variables in its title line, the values of those variables inside
the procedure depend entirely on the values given to the procedure as inputs. This is
true regardless of the existence or values of variables with the same names that may
be found elsewhere in the workspace.

One more experiment with variables and MAKE before returning to QUICKDRAW.
Type

PRINT :NUM

It should reply:

THERE IS NO NAME NUM

(If it prints something different from that, type

ERNAME "NUM

and start again!)

Now type

MAKE "NUM 5 and on the next line type
PR :NUM

(PR is the abbreviation for PRINT.) Now it should reply by printing a 5.

Define these two very similar-looking procedures:

TO FOO
PR :NUM
MAKE "NUM 2 * :NUM
PR :NUM

END

W&L-10 Commodore 64 Logo Tutorial

Words and Lists

TO FOOL :NUM
PR :NUM
MAKE "NUM 2 * :NUM
PR :NUM

END

After you have defined them and before you run them, type PR :NUM again. Logo will
still reply 5.

Now, in order and one at a time, type the following commands to Logo. We will explain
the mystery afterward.

FOO
PR :NUM
FOOL 4
PR :NUM

FOO
PR :NUM
FOOL 3
PR :NUM

What's happening?! FOO and FOOL have absolutely identical insides, and yet their
behavior is so very different. You printed the value that is inside the box named NUM
before and after running each procedure.

FOO knew about what was in that box and also changed it, but FOOL did neither. Before
and after FOOL, the value in NUM remained the same - even though it appears to have
two completely different values inside FOOL.

The explanation is in the title line. As mentioned earlier, when a procedure's title line
contains a variable name in it, that name refers to a totally private box created just for that
procedure.

So FOO could use the value of NUM that was lying around in the workspace at the time,
and could also change it. But FOOL had access only to its private box, which happened
to have the same name, but is altogether a different box.

Whenever the name NUM was used inside FOOL, FOOL took it to mean its own box of
that name. It was not the public box named NUM that FOOL printed and changed, but
only FOOL's NUM. As soon as FOOL stopped running, it took its NUM with it.

Commodore 64 Logo Tutorial W&L-11

Words and Lists

When you then typed PR :NUM again, you had no access to FOOL's private box and
referred to everyone's public box named NUM. The private variable is called a local
variable, and the public one is a global variable.

{Sgr}
Admonition: Unless you really intend to make a variable public and available for
everybody to use and change, don't make global variables. They are troublemakers (in
large programs) precisely because anybody is free to fool around with them.

On the other hand, the great virtue of global variables is that they survive even after a
procedure is finished. When you need to have a value remembered even after the
procedure that created it is finished working, use a global variable.

Otherwise avoid global variables. It is almost never good style to use MAKE when
passing a variable to a procedure in the title line can be done easily.

Projects with MAKE: More Extensions to QUICKDRAW

5. Teach EASY to recognize digits and use them to multiply the effect of the very next
keypress. For example, the effect of typing 3F, should be either FD 30 or REPEAT 3 [FD
10]. You decide which.

If the character 3 is typed to RC, RC's output, which EASY knows as CHTR, can be used
both in tests such as IF :CHTR = 3 and in numerical expressions such as :CHTR + 5. You
may also find the Logo primitive NUMBER? useful. The test NUMBER? :CHTR is true
for all characters 0 through 9.

Project 5 is a reasonable use of MAKE because it requires remembering a number from
one execution of EASY to the next. A command like MAKE "MULTIPLE :CHTR will
put the current value of CHTR into a box named MULTIPLE.

The contents of the CHTR box will be forgotten when EASY stops, but since EASY does
not have the variable name MULTIPLE in its title line, the value in that box will not be
forgotten and can be used until it is changed.

W&L-12 Commodore 64 Logo Tutorial

Words and Lists

6. Type MAKE "PENPOS [DOWN] and then define and experiment with the following
procedure.

TO PEN
IF :PENPOS = [DOWN] PU MAKE "PENPOS [UP]

ELSE PD MAKE "PENPOS [DOWN]
PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENPOS

END

The procedure contains at least one primitive (SENTENCE) that you have not seen
before, and an interesting use of a global variable. When you understand how this
procedure works, include it in EASY.

7. Write a similar procedure for ST and HT.

Interactive Programs Without Waiting: RC?

Until some key has been pressed, RC cannot output a message saying which key. That is
why QUICKDRAW always waits until a character is typed. Every time it runs RC, RC
waits until it has something to report back to EASY.

Sometimes, though, you want the program to keep going while waiting for the user to
type something. For example, in video action games, objects are supposed to keep
moving on the screen whether or not the player touches the keys or twiddles the knobs.

Let's design a program in which we drive the turtle like a car. The turtle will always be
moving, but we can increase or decrease its speed and can change its direction. In order
to have it moving constantly, we will need a loop something like this:

TO LOOP
FD :DIST
LOOP

END

Make DIST have some small initial value, like 1 or 2, by typing MAKE "DIST 2. Then
run LOOP. The turtle will slowly crawl across the screen.

Commodore 64 Logo Tutorial W&L-13

Words and Lists

To be more flexible, LOOP should check to see if the person has typed anything, and, if
so, should take some action before moving the turtle again. RC? is the primitive that
checks to see if a character has been typed.

The logic is this: If the person has typed a character,

IF RC?

then read the character, and control the turtle accordingly:

EASY RC

So the completed LOOP would look like this:

TO LOOP
IF RC? EASY RC
FD :DIST
LOOP

END

Define LOOP and experiment with it using your EASY just as it is. How does LOOP
behave differently from QUICKDRAW?

As it is written, EASY does not give sensitive control over the speed of the turtle.
Pressing F does give a burst of distance, but the turtle settles back to the same slow crawl
immediately afterward.

Look at LOOP to see what determines the turtle's speed. Now study EASY to see why it
does not alter that speed. Even though EASY is not quite what is needed for this program,
still it provides a number of features that are just as appropriate for LOOP as they are for
QUICKDRAW.

{Rgr}
So that you can make changes to an EASY-like procedure without changing EASY itself
(which is just fine for QUICKDRAW), make a copy of EASY using a different title. To
do this, edit EASY and change the title in the editor to ACTION. Then, when you define
the procedure, it will be named ACTION.

EASY is still around, as before, but a new copy titled ACTION now exists also.

W&L-14 Commodore 64 Logo Tutorial

Words and Lists

If you have been doing the projects, your copy of EASY (and, therefore, ACTION) will
no longer look like the original. But if it did, it would look like this:

TO ACTION :CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "Q NODRAW TOPLEVEL

END

Do you see that although ACTION controls the turtle's movement, it does not
change :DIST, and therefore does not affect the turtle's speed?

Instead of having F move the turtle directly, it could increase the distance that the turtle
moves each time through LOOP. The logic might be like this - If the character typed is F

IF :CHTR = "F

make the distance to travel 2 greater than it was the last time

MAKE "DIST :DIST + 2

If F stood for Faster, S could stand for Slower and decrease DIST. A working version of
ACTION might look like this:

TO ACTION :CHTR
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "F MAKE "DIST :DIST + 2 ; FASTER
IF :CHTR = "S MAKE "DIST :DIST - 2 ; SLOWER
IF :CHTR = "D DRAW

END

When you press the F key, the distance that the turtle will move during each loop
increases by 2 steps. The S key decreases the number of steps per loop.

Commodore 64 Logo Tutorial W&L-15

Words and Lists

{Rgr}
By the way, the comments FASTER and SLOWER are just there to make it easier to
remember how the program works. A semicolon in an instruction line tells Logo to
ignore what follows, allowing you to write notes to yourself as reminders.

Define ACTION in one of the ways suggested above, and write a START procedure like
this one:

TO START
MAKE "DIST 0
LOOP

END

Remember to edit LOOP so that it uses ACTION in place of EASY.

Now type START to start the program and experiment with controlling the turtle. With
practice, you can learn to control it well enough to draw even complicated figures.

Projects with RC, RC?: Extensions to LOOP

8. By changing LOOP so that both the turtle's position and heading are updated each time
through the loop, the turtle can then draw curves. Here is how LOOP would look:

TO LOOP
IF RC? ACTION RC
FD :DIST

RT :ANG
LOOP

END

Design and make some changes to ACTION and START to take advantage of the new
capabilities of LOOP.

This procedure is very interesting to experiment with. Try to learn to draw with it.

9. Add a feature to stop the turtle. Experiment also with three new commands, one of
which does MAKE "DIST (-:DIST), another of which does the same for ANG, and the
third of which makes both DIST and ANG negative. Try to gain enough skill at
controlling the turtle to get it to write your name in cursive script! ('Tain't easy!)

W&L-16 Commodore 64 Logo Tutorial

Words and Lists

INTERACTIVE LANGUAGE

Don't Skip This Section! MEMBER?, EMPTY?

Right now, we would like you to get to know two very important Logo primitives. While
you won't be using them right away, MEMBER? and EMPTY? will appear throughout
this section of the tutorial, so you should have a good idea of what they do.

MEMBER? takes two inputs - a word and a list - and outputs the value "TRUE if the
word is one of the elements of the list. (You can also give MEMBER? a letter/number
and a word, and it will return "TRUE if the letter/ number is part of the word.)

EMPTY? takes one input and outputs "TRUE if the input is the empty list or the empty
word. We will explain this in greater detail later on.

To see how MEMBER? works, type these commands exactly:

MEMBER? "DOG [THE DOG BARKED]
MEMBER? "CAT [THE DOG BARKED]
MEMBER? "U "AEIOU
MEMBER? "G "AEIOU
MEMBER? "4 "1234XYZ

Your screen should look like this:

MEMBER? "DOG [THE DOG BARKED]
RESULT: TRUE
MEMBER? "CAT [THE DOG BARKED]
RESULT: FALSE
MEMBER? "U "AEIOU
RESULT: TRUE
MEMBER? "G "AEIOU
RESULT: FALSE
MEMBER? "4 "1234XYZ
RESULT: TRUE

Commodore 64 Logo Tutorial W&L-17

Words and Lists

Some Friendly Introductions: SENTENCE (SE), REQUEST, LPUT, FPUT

If you did project 6 above, you have already seen the Logo primitive SENTENCE used to
combine two pieces of text into a single sentence. In the procedure in project 6 the line
read

PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENPOS

When PENPOS was [DOWN], the effect of that line was to print

THE TURTLE'S PEN IS NOW DOWN

When PENPOS was [UP], the effect of that line was to print

THE TURTLE'S PEN IS NOW UP

Define the procedure GREET. You may wish to spell out PRINT and SENTENCE fully
or to abbreviate them. Both forms of the procedure are shown.

Fully spelled out:

TO GREET :PERSON
PRINT SENTENCE [NICE TO MEET YOU,] :PERSON

END

or abbreviated:

TO GREET :PERSON

PR SE [NICE TO MEET YOU,] :PERSON
END

Run the procedure GREET, giving it a person's name as input. For example:

GREET [GEORGE]
GREET [GEORGE WASHINGTON]

GREET has a simple behavior. Whatever its input is, it prints a sentence com
posed of the words NICE TO MEET YOU (with a comma at the end) and that input.

W&L-18 Commodore 64 Logo Tutorial

Words and Lists

Now we will create a procedure which uses GREET in a brief friendly conversation. The
behavior of the new procedure will be a bit more complex. It will start up with no
information at all (no input), and will ask the person to type his or her name. Then it will
use GREET to greet the person.

To do this, it must give GREET an input consisting of whatever the person typed.

Let's write the procedure as we review its behavior. It needs no inputs, so its title line
could be: TO FRIENDLY. It asks the person it meets to type a name: PR [WHAT'S
YOUR NAME?]. It then gives GREET an input consisting of whatever the person types:
GREET REQUEST.

{Egr}
REQUEST (abbreviated RQ) is a Logo primitive that tells a procedure 1) to wait for a
person to type a line and press <RETURN> and 2) to output that line as a list that can be
used by a procedure.

Here, REQUEST's output is used as GREET's input. Define FRIENDLY.

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
GREET REQUEST

END

To run it, type FRIENDLY (remember, no input!) and press <RETURN>. When it asks,
type your name (and press <RETURN>). You do not need to type brackets or other
special decorations; just your name will do. Run it again, but this time, when it asks for
your name, press <RETURN> without typing anything at all. Your screen will now look
something like this:

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY
WHAT'S YOUR NAME?

NICE TO MEET YOU,

REQUEST can return an empty list, indicating that the person typed nothing, but GREET
is not smart enough to know what to do about that. It would be nicer if GREET could
recognize an empty input and respond differently.

W&L-19 Commodore 64 Logo Tutorial

Words and Lists

Here's a version of GREET that does that. We will use the primitive EMPTY? to check
for bashful typists.

TO GREET :PERSON
IF EMPTY? :PERSON PRINT [OH! YOU MUST BE QUITE SHY.) STOP
PR SE [NICE TO MEET YOU,] :PERSON

END

Edit GREET to insert the new line and try it again, as you did before.

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY
WHAT'S YOUR NAME?
OH! YOU MUST BE QUITE SHY.

This time GREET is better about handling the no-response response, but it apparently has
a terrible memory! After all, it has already met HANNIBAL THE TURTLE, and should
have said something more like GOOD TO SEE YOU AGAIN rather than NICE TO
MEET YOU.

{Egr}
Helping the computer remember names brings in a whole new idea. For GREET to
remember, it must be a learning program. It must keep a list of the people it has already

met, and, when it gets a person's name, it must be able to check to see whether that name
is on its list. If the person is a member of the list of known people

IF MEMBER? :PERSON :KNOWN

then GREET should print some appropriate response and then stop.

PR SE [GOOD TO SEE YOU AGAIN] :PERSON STOP

If the person is not a member of that list, then GREET should say what it did before. It
should also stick the person's name at the end of the list of known people. That is
accomplished by taking the list out of the box named KNOWN, tacking the person's
name at the end of it, and placing the result back in the box.

W&L-20 Commodore 64 Logo Tutorial

Words and Lists

MAKE "KNOWN LPUT :PERSON :KNOWN

LPUT takes two inputs: an object (in this case PERSON) and a list (in this case
KNOWN) and puts the object in the list at the end, as the last element. LPUT abbreviates
LastPUT, but there is no fully spelled out name of the primitive. (Its companion FPUT,
for FirstPUT, will put in an appearance later on.)

Here is GREET as it is now designed.

TO GREET :PERSON
IF EMPTY? :PERSON PRINT [OH! YOU MUST BE QUITE SHY.] STOP
IF MEMBER? :PERSON :KNOWN PR SE [GOOD TO SEE YOU AGAIN]

:PERSON STOP
PR SE [NICE TO MEET YOU,] :PERSON
MAKE "KNOWN LPUT :PERSON :KNOWN

END

Edit it to include the new changes, and when it is defined, type

FRIENDLY

What happens? Ah! Logo complains that there is no list of known people.

Before GREET has met any people, the list may have no names in it, but it must still exist
in order to be checked. That is why Logo said

THERE IS NO NAME KNOWN

This problem is solved by typing

MAKE "KNOWN []

Type

PRINT :KNOWN

and notice that just an empty line is printed. Now type

FRIENDLY

again.

W &L-21 Commodore 64 Logo Tutorial

Words and Lists

After it finishes greeting you, type

PRINT :KNOWN

again and note what you see. Play with it for a while, perhaps by typing

REPEAT 10 [FRIENDLY]

Introduce new people and reintroduce old people. Type

PRINT :KNOWN

to see what its memory contains. (If the program is not being friendly, check for errors.)

Finally, some fine points. When the person has been too shy to type a name, let GREET
be a bit pushier. Instead of just stopping, it can ask again. How? By running FRIENDLY
before stopping. The line might look like

IF EMPTY? :PERSON PRINT [DON'T BE SHY. PLEASE TELL ME.] FRIENDLY
STOP

Edit GREET again, making this last change, and experiment with it. Notice that even
after you have edited GREET it remembers the people it had met earlier. Any time you
want to, you can make it forget everybody by typing

MAKE "KNOWN []

to empty out its list. You can also type

EDIT NAMES

and change the contents of the name KNOWN at will. Be careful, when you do that, to
make sure that when you are finished all of the open and closed brackets match up
properly!

There are two more features that would make GREET seem really like an intelligent
program. Try typing I DON'T WANT TO TELL YOU, or NONE OF YOUR
BUSINESS, or even MY NAME IS PAUL when FRIENDLY asks your name. GREET
should certainly not say NICE TO MEET YOU, NONE OF YOUR BUSINESS.

W&L-22 Commodore 64 Logo Tutorial

Words and Lists

It would be nice if GREET could be given enough knowledge of English to recognize at
least these cases and respond properly. Also, it would be nice if both GREET and
FRIENDLY had a bit more variety in what they said. You will be able to make both of
these improvements by the end of this chapter.

First you must learn some new primitives and programming techniques.

Interlude: Clearing the Text Screen with CLEARTEXT

Type CLEARTEXT to Logo. The text screen will be cleared off and the cursor will be
placed at the upper left. (You can achieve the same effect by typing <SHIFT> <CLR>.)

While working on this chapter you will often need to clear the text screen. To get some
practice in, let's mess up the text screen some. Typing the following lines should create
plenty of mess:

ABC
+
:

Messy enough? Now type <SHIFT> <CLR>. Ah, if only all cleaning up were that easy.

Objects: Producing RESULTs as Output, and Using Them as Input

The best way to come to understand Logo objects well is to use them in a variety of
contexts. A formal definition will come later, but some experiments
are needed now. Type

5 <RETURN>
[COMMODORE 64 LOGO] <RETURN>
"BEEP <RETURN>

(Don't forget the double-quote at the beginning of "BEEP.)

W&L-23 Commodore 64 Logo Tutorial

Words and Lists

In each case Logo responds RESULT: followed by the object you typed.

5
RESULT: 5
[COMMODORE 64 LOGO]
RESULT: [COMMODORE 64 LOGO]
"BEEP
RESULT.-BEEP

-
In two of the cases Logo typed exactly what you typed. But in the third case, Logo typed
the word BEEP without a double-quote mark.

Here is the explanation. The object you typed was the word BEEP. The double-quote
mark was merely to tell Logo that you were typing an object and not the name of a
procedure.

Typing "FRIENDLY (with the quote-mark) will have the same effect. Typing
FRIENDLY (without the quote-mark) will run the procedure that you wrote in the last
section.

The double-quote is not part of the object; it is just a marker. Neither numbers nor lists
can be procedure titles, so Logo does not need any special markers to help it recognize
those as objects.

Also, words that are already inside lists, like 64 or LOGO, need no special markers. Logo
will not try to run them unless you explicitly tell it to.
-

If an object is "given to" Logo in immediate mode, Logo announces it with the word
RESULT:. If an object is "given to" PRINT as an input, PRINT prints the object on the
screen.

PRINT, too, changes slightly the appearance of what you type. Using the same three
examples, PRINT 5, PRINT [COMMODORE 64 LOGO], and PRINT "BEEP, both of
the last two are printed without their punctuation.

PRINT doesn't show the marker or the outer brackets that surround a list, but merely the
object and the list elements themselves.

W&L-24 Commodore 64 Logo Tutorial

Words and Lists

{Egr}
Even though we have been playing with a number (5), a list ([COMMODORE 64
LOGO]), and a word (BEEP) - all abstractions - we think of these very concretely, as if
they were solid objects that can be tossed back and forth among players in a game.

This metaphor is very useful in Logo programming. Procedures are the players. You
make up the rules of the game, deciding what the behavior of each procedure will be,
what object (if any) a procedure should create, and who should receive the object after it
is made.

If your screen is cluttered, clear it with the primitive CLEARTEXT or with <SHIFT>
<CLR>.

{Rgr}
There are other ways of giving objects to Logo in immediate command mode other than
by placing them there yourself. You can let a primitive create them and place them there.

At the beginning of the section, you typed

MEMBER? "G "AEIOU

and Logo announced that the object FALSE was given to it as a result. Here are some
other ways of getting procedures and primitives to hand objects to
Logo.

RANDOM 100 FIRST :KNOWN

The primitive RANDOM outputs a random number from 0 up to (but not including) its
input. FIRST outputs the first element of the object that is its input. (In this case, the
object is a list from the box named KNOWN that you created earlier in the chapter.)

In the next two lines are two other primitives that output objects. It may be harder to
recognize the primitives this time, because you are probably not used to thinking of them
as primitives.

5 + 6
:KNOWN

The first primitive is the +. It takes two inputs, one on each side of it, and outputs their
sum if they are numbers.

Commodore 64 Logo Tutorial W &L-25

Words and Lists

The second primitive is the :(which is a special kind of abbreviation for THING). It takes
one input, attached to it on the right, and outputs the object that is found in the box of that
name.

(The box, KNOWN, was created earlier as part of the FRIENDLY program.)

{Egr}
There are only two ways of creating objects. You can put them there yourself, or a
primitive or procedure can create them.

Some primitives create objects as output available to other commands and some don't.
For example, if you type FIRST 37, Logo announces the object that FIRST outputs.
(What is it?) But if you type PRINT 37, the input simply appears on the screen and
cannot be used by other commands.

Some primitives require objects as input and others don't. If a primitive does need an
object as input, it does not care whether that input is put there by you, or is the result of
running another primitive.

So, in the command PRINT FIRST :KNOWN, the object that PRINT needs as its input,
is created by FIRST and supplied as its output.

Writing Procedures that Create and Output Objects: OUTPUT

So far, you have used commands which output values, such as RANDOM and
MEMBER?, but you have never written a procedure that creates an object and outputs it

for another procedure to work with. Such a procedure is vastly more powerful and
flexible than anything we have discussed up to now.

To begin, let's define the procedures TEN and DOUBLE:

TO TEN
OP 7 + 3

END

TO DOUBLE :NUMBER
OP 2 * :NUMBER

END

Now, typing TEN to Logo gets the response RESULT: 10. TEN can be used in
computations.

W&L-26 Commodore 64 Logo Tutorial

Words and Lists

Type

PRINT DOUBLE TEN

The OUTPUT command (or its abbreviation, OP) tells these procedures to stop and
"output an object" or "return a value" or to "produce a result." To see what all this means,
try the following experiments by typing these lines to Logo:

10
TEN
DOUBLE 5
5 * DOUBLE 1

When you typed the number 10, you were handing Logo the object 10 directly. The
object 10 has the value 10 or results in a 10 lying around. Logo announces that with the
message RESULT: 10.

When you typed the procedure name TEN, it computed a value and then it handed the
value (the object 10) to Logo. Similarly, when you typed the procedure name DOUBLE,
you handed it the object 5 to work with, it computed the value 10, and handed that back
as the result.

In both of these cases, you may think of the procedures as having replaced themselves by
the value they output. That makes the last line especially clear. If DOUBLE 1 replaces
itself with the value 2, then the line becomes 5 * 2.

-
A note about terminology: object and value.

We often use the word "object" to refer equally to words (including such things as
numbers and letters) and lists (including simple sentences or complex data structures).

We do this because Logo can easily combine words and lists to make other words and
lists, break words and lists into pieces, or pass words and lists back and forth between
procedures as if they were concrete, solid objects.

When we need to specify what kind of object, we refer to "numbers" or "words" or
"lists," but the word "object" refers to them all.

W&L-27 Commodore 64 Logo Tutorial

Words and Lists

The word "value" sometimes sounds more natural than "object" when we are referring to
the result of some computation, but there is really no important difference between the
words.
-

Here is a more useful application of the same sorts of procedures.

TO PI
OUTPUT 3.14159

END

TO CIRCUMF :DIAMETER
OP PI : DIAMETER

END

Having a procedure that figures out the circumference of a circle, given its diameter, has
a practical application in Logo. Among other jobs, it can be used in a graphics procedure
to draw circles of a given size.

All circles in Logo are drawn by drawing short line segments, turning a little, and
repeating the process until the circle closes. The smaller the line segments (or the greater
the turn), the smaller the circle.

But how do we determine the length of the segments if we want a circle of a very specific
size? If the circle is composed of twenty segments, then each one is one-twentieth of the
circumference. If it is drawn with twelve segments, then each is one-twelfth of the
circumference.

Clearly, then, to draw a circle of a specific diameter, we must first know the
circumference. Then we can divide it into equal parts, and repeatedly draw one of these
parts and turn the appropriate amount.

TO CIRCLE :DIAMETER
ARC 20 (CIRCUMF :DIAMETER) / 20

END

TO ARC :SEGMENTS :CHORD
REPEAT :SEGMENTS [FD :CHORD RT 18]

END

W&L-28 Commodore 64 Logo Tutorial

Words and Lists

-
Try

CIRCLE 40 RT 180 CIRCLE 40

The following definition of ARC gives a slightly more symmetrical placement of the
circles on a vertical line. Figure out why.

TO ARC :SEGMENTS :CHORD
FD :CHORD/2
RT 18
REPEAT :SEGMENTS - 1 [FD :CHORD RT 18]
FD :CHORD/2

END

It is useful to have a definition of CIRCLE that curves to the left as well as this one that
turns to the right. You can also define half- and quarter-circles using the same ARC
procedure.
-

The objects these procedures manipulated were all words - in fact, only numbers. Now
back to lists.

Define these two procedures.

TO PEOPLE
OUTPUT [SANDY CHRIS [THE TURTLE] DANA LEE PAT DALE]

END

TO ACTIONS
OUTPUT [LOVES [DREAMS ABOUT] KISSED HATES [CAN'T STAND]

LIKES]
END
-

We have chosen the names PEOPLE and ACTIONS as good descriptions of the nature of
the procedures. You will be using these procedures often, so you might like to choose
names that are shorter or easier to type, like PPL and ACTS, or NOUNS and VERBS, or
just N and V.

Commodore 64 Logo Tutorial W&L-29

Words and Lists

{Rgr}
As you develop more complex programs, it will become especially important that you
choose procedure titles and variable names that help you remember what their purpose is.
The best policy is to choose names that are easy in two ways: easy to type and easy to
remember.
-

{Egr}
These procedures contain instruction lines that are too long to fit neatly on the screen, but
just continue typing normally, without pressing <RETURN> when you get to the edge of
the screen. Logo will place a! at the end of the screen to indicate that your line continues
past there, but will continue to show the rest of your typing on the next line.

Type these procedures accurately, being particularly careful about getting the left and
right brackets in the correct places. (Notice that they are the square brackets, and not
parentheses!)

-
{Rgr}
Once you are in the editor, you can type any number of procedures before pressing
CTRL-C to define them. (But remember you must type END after each procedure before
starting the next one.) In this case it makes little difference whether you define the

procedures one-by-one or both together. Sometimes, though, you will find it very
convenient to be able to look at one procedure while you are defining another.
-

The only behavior of these procedures is to output a list. PEOPLE outputs a list of seven
names. Six of those names are words, but one of them, THE TURTLE, is itself a list of
two words.

ACTIONS also outputs a list. That list contains only six elements, four of which are
single words and two of which are lists of two words each.

To demonstrate that these procedures output objects, type PEOPLE to Logo. Then type
PRINT ACTIONS. Your screen should look something like this.

PEOPLE
RESULT: [SANDY CHRIS [THE TURTLE] DANA L

EE PAT DALE]

W&L-31 Commodore 64 Logo Tutorial

Words and Lists

PRINT ACTIONS
LOVES [DREAMS ABOUT] KISSED HATES [CAN'T

STAND] LIKES

When Logo cannot fit everything onto one line, it breaks the line where it must, and
continues on the next line. (Note that a ! does not appear at the end of the first line in
immediate mode, unlike in edit mode.)

Making One Procedure's Output into Another Procedure's Input: OUTPUT (OP),
FIRST, BUTFIRST (BF), LAST, BUTLAST (BL), SENTENCE (SE), WORD

Clear the text screen.

What object does FIRST PEOPLE output? (Type FIRST PEOPLE to check if you want
to.)

Logo also has a primitive BUTFIRST (abbreviated BF) which outputs all but the first
element of its input. Type BUTFIRST PEOPLE to see the object it outputs.

And what is the FIRST of that object? Type FIRST BUTFIRST PEOPLE to see.

What object would BUTFIRST output if its input is the object created by BUTFIRST
PEOPLE. (In other words, what object is created by BF PEOPLE, and what is the BF of
that?) Type BF BF PEOPLE or BUTFIRST BUTFIRST PEOPLE to check.

And what is the FIRST of that object? Type FIRST BF BF PEOPLE to see.

{Egr}
Remember to clear the text screen whenever it will help you see what you are doing.

Here are some more experiments to do with PEOPLE and ACTIONS. They are all to get
you familiar with some new primitives and passing objects between them. You may type
abbreviated forms such as PR, SE, and BF, or fully spelled out forms, whichever you
prefer, but don't just sight-read these experiments. Do each of them and compare the
results you get with the comments written before or after the experiments.

W&L-30 Commodore 64 Logo Tutorial

Words and Lists

Logo can select an object from either end of a list,

FIRST ACTIONS
LAST ACTIONS

and from either end of a word.

Type:

PR FIRST "CAT
PR LAST "CAT

-
When FIRST or LAST receive a word as input, they output the corresponding (first or
last) letter of the word. When they receive a list as input, they output the corresponding
element of the list.

{Sgr}
BUTFIRST (BF) and BUTLAST (BL) output all but what FIRST and LAST output. It is
important to remember (and a common source of bugs for those who forget) that the BF
or BL of a list is always a list. Thus, the BUTFIRST of [FD 30] is not 30, but [30].
-

FIRST of ACTIONS produced an object, a result. Logo can manipulate that object,
taking its FIRST or LAST element, just as it can manipulate any other object.

PR FIRST FIRST ACTIONS
PR LAST FIRST ACTIONS

Since FIRST ACTIONS is LOVES, its FIRST is L and its LAST is S.

Type:

PR SENTENCE PEOPLE ACTIONS
PR SE FIRST PEOPLE FIRST ACTIONS

SENTENCE (abbreviated SE) glues any two objects together into a sentence. The
sentence of the lists output by PEOPLE and ACTIONS is a long one. The sentence of the
first elements of those lists is SANDY LOVES.

W&L-32 Commodore 64 Logo Tutorial

Words and Lists

Type:

PR (SE LAST PEOPLE LAST ACTIONS FIRST PEOPLE)

By surrounding SENTENCE and its inputs with parentheses, you can force SENTENCE
to take more (or fewer) than two inputs. This is often very important in interactive
language programs.

The next series of experiments is particularly important as it forms the basis for the vast
majority of the procedures you will use most in manipulating words and lists. Clear the
text screen. Do each experiment and note its behavior.

PEOPLE
BF PEOPLE or BUTFIRST PEOPLE
BF BF PEOPLE
BF BF BF PEOPLE

Be certain you see the pattern in the results of the previous four experiments before going
on. Now predict the results of each of these experiments and then check your prediction
by running the experiment.

FIRST PEOPLE
FIRST BF PEOPLE
FIRST BF BF PEOPLE
FIRST BF BF BF PEOPLE

Similar patterns hold for LAST and BUTLAST (BL).

PR BUTLAST ACTIONS or PR BL ACTIONS
PR LAST BL ACTIONS

Finally, you can combine several of these operations into one command.

PR (SE FIRST BF BF PEOPLE
LAST BL BL BL ACTIONS [ME])

SENTENCE glues parts together to make a sentence. We added [ME] to try to add some
interest.

Commodore 64 Logo Tutorial W&L-33

Words and Lists

{Egr}
Logo also provides the primitive WORD, which glues parts together to make a word. Try
these commands which include the new primitive WORD.

PR FIRST "SANDY (don't forget the double-quote mark)
PR LAST "VIC (remember, no space after the ")
PR WORD "C BF "SANDY

Here are some more complicated expressions using WORD.

PR WORD BL FIRST PEOPLE "WICH
PR WORD BL FIRST ACTIONS LAST BL PEOPLE

Subprocedures for Cleaner Programming

The primitives that Logo provides give immediate access to the first or last element of a
list, or to the first or last character of a word, but what about the second, third, or other
elements?

One set of procedures to output the SECOND, THIRD, FOURTH, and FIFTH elements
of an object is based on the experiments you tried above. Type these in, and try them out
with the projects suggested.

TO SECOND :OBJ
OP FIRST BF :OBJ

END

TO THIRD :OBJ
OP FIRST BF BF :OBJ

END

TO FOURTH :OBJ
OP FIRST BF BF BF :OBJ

END

TO FIFTH :OBJ
OP FIRST BF BF BF BF :OBJ

END

W&L-34 Commodore 64 Logo Tutorial

Words and Lists

PR (SE FOURTH PEOPLE THIRD ACTIONS THIRD PEOPLE)
PR (SE SECOND PEOPLE FIFTH ACTIONS THIRD PEOPLE)

The new procedures allow you to write equivalent commands in different ways. For
example, the two following commands have the exactly the same effect:

PR (SE FOURTH PEOPLE SECOND ACTIONS FIFTH PEOPLE)
PR (SE FIRST BF BF BF PEOPLE FIRST BF ACTIONS FIRST BF BF BF BF

PEOPLE)

... but there are important differences. Not only is the first shorter to type, but it is also
much more understandable. Writing understandable programs is a mark of good
programming.

A Generalization Using Recursion: ITEM

Although these new procedures vastly simplify both the look and the typing of some list
manipulations, they have some drawbacks. The most obvious is that in order to get PAT
out of the PEOPLE list, we'd need a procedure SIXTH, and even if we wrote that, there
would always be some list that was even longer.

What we really need is one single procedure that can retrieve any member of a list. (The
primitive ITEM does this, but let's write a procedure to see how the process works.)

As a first step toward figuring out how to write it, let us carefully describe its behavior in
English. Let us call this procedure NTH (as in fourTH, sixTH, sevenTH). We need to tell

NTH two things: what number element to find, and what object to choose it from. So
perhaps the whole title line will look something like this:

TO NTH :N :OBJECT

If N is 1, the procedure should just output the first element of the object. That instruction
would look like this in Logo.

IF :N = 1 OUTPUT FIRST :OBJECT

Commodore 64 Logo Tutorial W&L 35

Words and Lists

and the whole procedure, so far, would look like this:

TO NTH :N :OBJECT
IF :N = 1 OUTPUT FIRST :OBJECT

END

Create this procedure. At this stage you can use the procedure to get the first (but only the
first) element of an object. Try typing PR NTH 1 PEOPLE, and make sure it prints
SANDY.

That is the simplest situation. To come up with a good way of describing the other
situations, let us examine them one by one. If N is 2 then we want NTH to output the
first element of the next shorter object (the BUTFIRST of the object). The first element
of an object is something NTH knows how to output, so it can do the job itself. In Logo,
that might be translated this way:

IF :N = 2 OUTPUT NTH 1 BF :OBJECT

It will turn out that there is a neater way of doing things, but, for now, add that line to
your procedure, too, and check to see that PR NTH 2 PEOPLE causes Logo to print
CHRIS. You might also check PR NTH 1 ACTIONS and PR NTH 2 ACTIONS.

What if N is 3? NTH already knows how to find the second element of an object. To find
the third element, we could simply find the second element in the BUTFIRST of the
object. In Logo, this is translated:

IF :N = 3 OUTPUT NTH 2 BF :OBJECT

If we continued in this way, we might add a bunch of instructions that look like this:

IF :N = 4 OUTPUT NTH 3 BF :OBJECT
IF :N = 5 OUTPUT NTH 4 BF :OBJECT
IF :N = 6 OUTPUT NTH 5 BF :OBJECT
IF :N = 7 OUTPUT NTH 6 BF :OBJECT

But this does not solve the original problem. N might still be some number larger than we
account for. Fortunately, there is a generalization we can make. In all of the cases where
N is not 1, the procedure figures out what to do by looking for element N-1 in the
BUTFIRST of the object.

W&L-36 Commodore 64 Logo Tutorial

Words and Lists

We will repeat the logic:

To output the NTH element of an object we need to know N and the OBJECT.

TO NTH :N :OBJECT

If N = 1, we want to OUTPUT the FIRST of the OBJECT.

IF :N = 1 OP FIRST :OBJECT

In every other case, we want to OUTPUT the N-1 element (found by using NTH with an
input of N-1) of the BUTFIRST of the OBJECT.

OP NTH :N - 1 BF :OBJECT

Thus, the procedure might look like this (with OUTPUT abbreviated as OP):

TO NTH :N :OBJECT
IF :N = 1 OP FIRST :OBJECT
OP NTH :N - 1 BF :OBJECT

END

Edit NTH to make your copy look like this new version and try it out with values of N
ranging from 1 to 7 and the PEOPLE list, or with values ranging from 1 to 6 and the
ACTIONS list. It even works on words. To print the ninth letter of the word
"MASSACHUSETTS, type

PR NTH 9 "MASSACHUSETTS

{Rgr}

Conveniently, you will not have to define NTH each time you use Logo. Remember, the
primitive ITEM does exactly what NTH does.

Commodore 64 Logo Tutorial W&L-37

Words and Lists

Projects Using ITEM and Recursion

10. Write a procedure that takes a number from 1 to 26 as input and outputs the
corresponding letter of the alphabet.

11. Using the procedure you wrote in project 10, write a new procedure that takes a list
containing a number from 1 to 26 and again outputs the corresponding letter of the
alphabet.

12. Using the procedure you wrote in project 11, write a new procedure that takes a list of
(exactly) two numbers ranging from 1 to 26 and outputs a two-letter word with the
corresponding letters of the alphabet.

13. Using the procedure you wrote in project 12, write a new procedure that takes a list of
(exactly) three numbers ranging from 1 to 26 and outputs a three-letter word with the
corresponding letters of the alphabet.

14. Using the reasoning suggested in this chapter, write a new procedure that takes an
arbitrary length list of numbers ranging from 1 to 26 and outputs the word composed of
the corresponding letters of the alphabet.

15. Using PEOPLE, ACTIONS, NTH (or ITEM), and Logo primitives PR, SE, and
RANDOM, write a procedure that prints random sentences. (Write subprocedures that do
parts of the job and then combine them.)

W&L-38 Commodore 64 Logo Tutorial

Words and Lists

DEFINITIONS AND MODELS

Some Important Primitives Used in this Chapter

-

The following summary gives a brief synopsis of some commonly used primitives. It is
by no means an exhaustive listing. If you don't see what you want, consult the Glossary.
-

The primitives that manipulate Logo objects can be classified into four categories:

1) Those that assemble objects
2) Those that decompose objects
3) Those that determine the nature of objects (i.e. Predicates)
4) Those that pass objects back and forth among procedures, to and from variable names,
and between the user and the procedure.

Primitives that assemble Logo objects:

WORD - Creates a word (a set of contiguous characters) from two inputs. Inputs
may be words, characters, or procedures that output words/characters.

SENTENCE (SE) - Creates a list from two inputs. Inputs may be words, lists, or
procedures which output words/lists. Unlike LIST, SENTENCE returns a list
containing no sub-lists.

LIST - Like SENTENCE, creates a list from two inputs. If either input is a list, it
will appear as a sub-list in the newly created list.

FPUT - Creates a list from two inputs, the second of which must be a list. The
new list created by FPUT consists of the first input followed by the elements of
the second input.

LPUT - Same as FPUT, except that LPUT creates a list consisting of the elements
of the second input followed by the first input.

Commodore 64 Logo Tutorial W&L-39

Words and Lists

Primitives that decompose Logo objects:

FIRST - Outputs the first element of its input. If the input is a word, FIRST
outputs a character; if the input is a list, FIRST outputs the first element of the list.

BUTFIRST (BF) - Takes one input and outputs all but the first element.

LAST, BUTLAST (BL) - Corresponding operations for last element of input.

COUNT - Takes a single input, a word or a list. Outputs the number of characters
in the word, or the number of elements in the list. (Remember that Logo treats a
sub-list as a single element of the larger list.)

ITEM - Takes two inputs; the first input must be a number, and the second must
be a word or list. Outputs the nth element of the second input.

Primitives that determine the nature of an object:

WORD? - Outputs "TRUE if the input is a word; otherwise, outputs "FALSE.

LIST? - Outputs "TRUE if the input is a list; otherwise, outputs "FALSE.

NUMBER? - Outputs "TRUE if the input is a number; otherwise, outputs
"FALSE.

EMPTY? - Outputs "TRUE if the input is the empty list or the empty word ([] or
"); otherwise, outputs "FALSE.

MEMBER? - Takes two inputs. Outputs "TRUE if the first input is an element of
the second input; otherwise, outputs "FALSE.

Primitive that passes an object from one procedure to another:

OUTPUT (OP) - Causes a procedure to STOP and output an object to another
procedure.

W&L-40 Commodore 64 Logo Tutorial

Words and Lists

Primitives that pass objects to and from variable names:

MAKE - Takes two inputs. The first input becomes the name associated with the
value of the second input.

THING - Takes a variable name as an input. Outputs the value associated with the
name. A colon (:) prefixed directly to a name is the abbreviation for THING.

Primitives that pass objects to and from the user:

REQUEST (RQ) - Waits for the user to type an input line followed by
<RETURN>. Outputs the input line as a list to the calling procedure.

READCHARACTER (RC) - Takes a character typed at the key board and outputs
it as a word to the calling procedure. (Remember that RC does not wait for you to
type <RETURN>.)

RC? - Outputs "TRUE if a keyboard character is pending; otherwise, outputs
"FALSE.

PRINT (PR) - Prints its input on the screen (or on the printer, if specified)
followed by <RETURN>. Input may be a word or a list. Notice that PRINT strips
away all brackets and single-quotes. (Compare with FPRINT in Glossary.)

PRINT1 - Prints its input on the screen without <RETURN>. Otherwise, exactly
like PRINT.

{Rgr}
Also, note that certain Logo primitives can take extra inputs if the entire command is
enclosed in parentheses, e.g. (PRINT :LENGTH :HEIGHT :WIDTH). The primitives are
LIST, WORD, SENTENCE, PRINT, and PRINT1. In this situation, LIST and
SENTENCE may also take one input instead of two.

When using parentheses to indicate extra inputs, be sure to put a space before the closing
parenthesis. Otherwise, Logo may assume that the parenthesis is part of a literal word,
and will complain that

(primitive) NEEDS MORE INPUTS

Commodore 64 Logo Tutorial W&L-41

Words and Lists

Definitions of Words and Lists
CHAR

We have not yet carefully defined Logo's two types of objects, words and lists. A word,
the simplest data object, consists of any continuous string of characters. You've seen
several already; here are some other examples:

90
3.1416
HI
ANTI DISESTABLISHMENTARIANISM
MUGWUMP
HENRY.THE.8TH
XYZ

R2D2

{Egr}
As you can see, numbers are Logo words, long and short English words are Logo words,
and even arbitrarily spelled symbols can be Logo words. Experience has already taught
you that when you type several Logo words, spaces separate them rather than becoming
part of them.

If you need words that contain odd characters like <SPACE> in them, you can surround
them with single-quotes. In the experiment that follows, type carefully, remembering to
put in all the double-quote characters and singlequote characters just as they are shown
and to type a space between the first A and the B.

Clear the text screen and type

“’A BC’ {note that there is a quote at the beginning and an apostrophe at each end.}
PRINT "`A BC'
[A BC]
PRINT [A BC]
LAST “’A BC'
LAST [A BC]

Your screen should look like this:

W&L-42 Commodore 64 Logo

Words and Lists

“’A BC'
RESULT: ‘A BC'
PRINT “’A BC'
A BC
[A BC]
RESULT: [A BC]
PRINT [A BC]
A BC
LAST “’A BC'
RESULT: C
LAST [A BC]
RESULT: BC

Notice that PRINT and other primitives (except OUTPUT and FPRINT) strip away
brackets and single-quotes.

The following procedure ODDWORD creates a word of three other words, two of which
have spaces in them. Define the procedure, typing carefully. Be sure to type a space
before the second parenthesis. (See page W&L-41 if you're not sure why.)

TO ODDWORD
OP (WORD “’A BA' “’BY B' “’OY)

END

Now try these experiments with the odd word that ODDWORD outputs.

PR ODDWORD
PR ITEM 1 ODDWORD
PR ITEM 2 ODDWORD
PR ITEM 3 ODDWORD
PR ITEM 10 ODDWORD
PR LAST ODDWORD
PR WORD ITEM 2 ODDWORD ODDWORD
PR WORD “’<space><space><space>' ODDWORD

Even though the word that ODDWORD outputs contains spaces, it is a word. Even
though it looks like a list when printed, it behaves like a word. The LAST of it is the
letter Y, not the word BOY.

Commodore 64 Logo Tutorial W&L-43

Words and Lists

A space can be typed, and the single-quote character allows you to insert that space inside
a word, but there are some characters that cannot be typed in to, procedure at all. An
example is the <CTRL> G character. If you were to try typing

PR “’<CTRL> G'

to Logo, it would say STOPPED! before you reached the second single-quote. But there
is a way to include even strange characters like that in a word. The Logo primitive CHAR
outputs the character which corresponds to the ASCII code it is given.

The ASCII codes for <CTRL> A through <CTRL> Z are 1 through 26. The codes for
capital A through capital Z are 65 through 90, or 64 larger. Thus, you will get the same
effect if you type

PR CHAR 65 or PR "A

-

{Rgr}
Note that on the Commodore 64, the INST key allows you to type in control characters
without using the command CHAR. See the Reference Guide for an explanation of the
INST key.
-

Empty words - words that contain no characters at all, not even a space - also exist. When
typing a command to Logo, one way to indicate you are referring to the empty word is by
following a " with a <SPACE> or <RETURN>. (The <SPACE> separates the word from
what follows, and is not part of the word.)

A list is an ordered collection of Logo objects. Its elements can be words or other lists.
Here are some examples of lists:

[COLORS [BLUE GREEN YELLOW RED] SIZES [LARGE SMALL]]
[555-2561 617-4436 401-9961]
[[FD 70] [RT 120] [FD 70] [RT 120] [FD 70] [RT 120]]
[]

The matched left and right square-brackets show the scope of a list. The first list contains
four elements, the second and fourth of which are lists themselves and thus are grouped
together with the square-brackets.

W&L-44 Commodore 64 Logo Tutorial

Words and Lists

The second list contains three elements, each a word denoting a telephone number. The
third list contains six sublists, each of which contains a Logo command. The fourth list is
empty; it contains no elements at all.

Spaces separate elements of the list. The number of spaces signifies nothing, and in fact,
more than one space between two elements will be ignored by Logo.

Programming - Some Metaphors and Some Review

Since we focus most of our attention in this chapter on the behavior of procedures, it is
worth spending a moment clarifying the language that we use.

Procedures have a "behavior." Very early you learned the primitive behaviors of DRAW
and FORWARD. You designed and created graphics procedures with a more complex
behavior.

Throughout the chapter, we have treated designing a program as a matter of clearly
describing a behavior to yourself in your own best language (that might be English) and
then translating from that description into the machine's best language (in this case,
Logo).

As you gain skill in Logo, you may find yourself "thinking in Logo" and skipping the
translation step.

You've noted that some primitives, like DRAW and PU (PENUP), need no information to
do their jobs. Other primitives, like FD and PR, cannot act without further input - a
distance for FORWARD to move the turtle, and some object for PRINT to print.

In most of the graphics procedures that you wrote, you provided the inputs to FD
yourself. In some cases, as in the case of BOX below, you provided FD's fixed input (50)
at the time that you defined the procedure.

In other cases, as in STAR, you provided FD with an input that remained undefined until
you ran the procedure. When you ran the procedure, you provided STAR with an input,
and STAR passed that input along to FD.

TO BOX
REPEAT 4 [FD 50 RT 90]

END

Commodore 64 Logo Tutorial W&L-45

Words and Lists

TO STAR :SIZE
REPEAT 5 [FD :SIZE RT 144]

END

Another way for a procedure to receive its input is from another procedure. Inputs to
graphics procedures were only rarely the outputs of other procedures, but you have
already seen this kind of object passing used extensively in this chapter.

The manipulation of objects constantly involves passing messages from operation to
operation: one procedure's output can be another procedure's input.

Some Details of Programming in Logo: Variables, Passing Objects, Logo's Way of
Understanding Commands, and Logo's Messages When It Doesn't Understand

Type this operation to Logo:

WORD "CAT "S

As has happened frequently in this chapter, we have suggested you type something to
Logo that caused it to respond with the word RESULT: followed by the result of the
operation. Logo includes the message RESULT: to remind you that it has computed a
result, but you have not told it what to do with the result. Compare the effect of this
command:

PR WORD "CAT "S

Both times, the word CATS appeared, but the second time you told Logo what to do with
the result (to print it) and so that is what it did.

You can predict the result of these operations:

WORD "HORSE "S
WORD "DOG "S

W&L-46 Commodore 64 Logo

Words and Lists

In each case, you typed

WORD somethingorother "S

suggesting a procedure that might look a bit like this:

TO PLURAL :SOMETHINGOROTHER
WORD :SOMETHINGOROTHER "S

END

Of course, since names of procedures and variables are arbitrary, you could choose
names that are easier to type. NOUN or IT might be good choices for the variable name.

TO PLURAL :NOUN
WORD :NOUN "S

END

Why did we switch from quote CAT and quote DOG and quote HORSE to colon
NOUN? When you typed

WORD "CAT "S

CAT was the word you wanted to attach the S to. In the procedure, the word NOUN only
stands for the word you want to attach the S to, but it is not the real word. You still want
the procedure to work on words like CAT, DOG, and HORSE.

-
Remember the tiresome joke?

Dale: Bet you've never heard of the word "antidisestablishmentarianism!"
Dana: Of course I have.
Dale: Pooh! I bet you can't even spell it.
Dana: Of course I can.
Dale: Go ahead. Let's see if you can spell it.
Dana: a, n, t, i, d, i...
Dale: Hah! Wrong already! "It" is spelled "i t."

Commodore 64 Logo Tutorial W&L-47

Words and Lists

Dale is playing with the confusion between what a word is and what it stands for. When
you speak, you change your tone of voice when you need to make that clear. Consider,
for example, how you might say the words

"Please say your name

to Dale if you really wanted Dale to answer "your name" instead of "Dale"? When you
write, you use quotation marks to help make your meaning clear. And when you program
in Logo, the quotation marks again mean "take this word literally" as they do in written
English.

{Sgr}
However, Logo's rule is different from the rule in English: in Logo there is a beginning
quote, but no quote after the word. The end of the word is shown by a space. When you
need to indicate that more than one word is to be taken literally, you must either
separately quote each word, this way

"YOUR "NAME

or enclose all of the words in square brackets, this way

[YOUR NAME]
-

Now type in the procedure:

TO PLURAL :NOUN
WORD :NOUN "S

END

To run it, type PLURAL followed by a quoted word like this:

PLURAL "CAT
PLURAL "HORSE

W&L-48 Commodore 64 Logo Tutorial

Words and Lists

Your screen will look like this:

PLURAL "CAT
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

WORD :NOUN "S
AT LEVEL I OF PLURAL

Inside the procedure PLURAL, Logo has created an object and does not know what to do
with that object. It is telling you what problem it was having and exactly where it
encountered the problem.

Logo tells which of your procedures confused it (in this case, only one of your
procedures, PLURAL, was involved, but there might have been more).

It tells the line in which it got stuck. And it tells the "level" at which it got stuck - how
many procedures it was already trying to execute when the error occurred.

To see the meaning of level, create another procedure that runs PLURAL.

TO TRYLEV
PLURAL "CAT

END

And try it.

TRYLEV
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

WORD :NOUN "S
AT LEVEL 2 OF PLURAL

Note that the level is now 2. TRYLEV is the first level, the command you typed to the
"top level" of Logo. Since PLURAL is "within" TRYLEV, its level is 2. Level can be
useful information when debugging complex programs.

Before you can tell Logo what to do with the object it creates inside PLURAL, you have
to decide that for yourself. You know how to tell Logo to PRINT the result immediately,
but perhaps you want to do something more complicated with the plural word before
printing it.

Commodore 64 Logo Tutorial W&L-49

Words and Lists

Suppose, for example, you want to create a procedure that brags about your pet like this:

I LIKE some-pet-or-otherS.
some-pet-or-otherS ARE GREAT, BUT MY some-pet-or-other IS THE BEST!

In the second sentence, we want the plural to be tucked into the sentence before it is
printed, and in the first sentence we need to do two things before printing - attach a
period to the plural and then stick the whole thing at the end of the sentence.

{Rgr}
Since we want to use the object that PLURAL creates in different ways, it would be nice
if PLURAL would hand the object back to us to manipulate further as we wish. This is
accomplished by telling it to OUTPUT the object.

Edit PLURAL to insert the word OUTPUT (or its abbreviation OP) in the proper place.
The procedure will now look like this:

TO PLURAL :NOUN
OUTPUT WORD NOUN "S
PRINT [DONE]

END

Now run it again as you did before.

PLURAL "CAT
PLURAL "HORSE

This time, your screen should say:

PLURAL "CAT

RESULT: CATS
PLURAL "HORSE
RESULT: HORSES

That is precisely what we want. PLURAL has computed the result, and we are still free to
decide what to do with it.

W&L-50 Commodore 64 Logo Tutorial

Words and Lists

{Sgr}
But what became of the DONE that we told PLURAL to print? OUTPUT tells a
procedure not only to return a value, but to stop immediately. If it is important that
PLURAL announce when it is done, it must print DONE before it is done. (It can't do
anything after it is done!)

However, if PLURAL is to be used inside another procedure, say one that brags about
pets, PLURAL probably should not print anything, anyway. It should do its job quietly,
and let the superprocedure that uses it decide what to print and when.

Edit PLURAL again to remove the useless line PRINT [DONE].

Try to predict what each of these commands will do, and then type them to see how each
works:

PR SE [I LIKE] PLURAL "CAT
PR WORD "TOM PLURAL "CAT
PR WORD PLURAL "CAT ".
PR SE [I LIKE] WORD PLURAL "CAT ".

How Logo Interprets a Command

It is worth spending a moment to understand how Logo interprets a command as complex
as the last one above.

Logo reads from left to right, but as you will see by following the diagram and the
discussion on the next page, PLURAL is the first operation to be executed.

Commodore 64 Logo Tutorial W&L-51

Words and Lists

{Diagram:

PR SE [I LIKE] WORD PLURAL "CAT ".

underneath:

PR with line to “PR”
Input with line to “SE”
SE with line to “Input”
input1 with line to “[I LIKE]”
[I LIKE] under it with line to “input1”
input2 with line to “WORD”
WORD under it with line to “input2”
input1 with line to “PLURAL”
PLURAL under it with line to “input1”
input with line to “”CAT
“CAT under it with line to “input”
input2 with line to “”.”
“ under it with line to “input2”}

First Logo sees the word PR. That means that it will have to print whatever follows. So
before executing PR, Logo must read further to see what follows. PR must wait.

Instead of finding an object, Logo encounters another operation, SE. Furthermore, this
primitive requires two inputs of its own, so again Logo must read on to find them. PR
waits for SE and SE waits for its inputs.

Logo finds the object [I LIKE] as a first input to SE. But SE needs another, so Logo reads
further.

Next it finds WORD. Again, this is not an object but an operation. As before, this
primitive requires two inputs, so Logo reads still further.

The first thing it finds is, again, not an object but another operation, PLURAL. PLURAL
requires one input, so Logo must still look further.

This time Logo finds an object, "CAT - and since PLURAL needs only the one input, it
can now execute. It outputs CATS which becomes the first input to WORD. Still, WORD
requires a second input which Logo has not yet seen. So, now - after executing PLURAL
"CAT - Logo continues to read through the original line and finds the object ". at the end
of it.

W&L-52 Commodore 64 Logo Tutorial

Words and Lists

Logo has now found two objects - CATS and .- to use as inputs to WORD. WORD can
now execute, outputting CATS. which becomes the second input to SE. SE can now
execute, outputting [I LIKE CATS.] which becomes the input to PR. PR can now
execute, printing (not outputting!)

I LIKE CATS.

This left-to-right reading but (seemingly) right-to-left execution can be confusing
sometimes. Both of the following command lines will cause Logo to complain. Try them
out to see when and where the complaint occurs, and then use an analysis like the one
given above to understand what Logo was doing when it had to stop.

PR SE [I LIKE] WORD PLURAL [CAT] ".
PR SE [I LIKE] WORD PLURAL "CAT [.]

Sometimes the complexity of a line makes it difficult to understand even by the person
who first wrote it. Before reading on, try to predict what the following Logo command
will do. Then type it in to try it, and read on.

PR SE WORD LAST PLURAL "CAT "CAT "CAT

When you write complex Logo commands - especially if you are writing them for other
people to understand, but often even for yourself - it can be a good idea to use
parentheses to help group the parts of the command. Logo will interpret the command
according to its rules equally easily with or without the parentheses, but people find the
added punctuation helpful.

You should decide for yourself how much parenthesizing to do. Sometimes, using the
maximum is best. At times, the maximum looks too cluttered, and just a few are better.
The choice is entirely a matter of taste. For example, that last command might be
parenthesized in the following ways. Which way makes it visually clearest to you what
the command does?

PR (SE (WORD (LAST (PLURAL "CAT)) "CAT) "CAT)
PR SE (WORD LAST (PLURAL "CAT) "CAT) "CAT
PR SE (WORD (LAST PLURAL "CAT) "CAT) "CAT

-
Be sure to type a space between "CAT and)- otherwise, Logo will read the parenthesis as
part of the word and complain that SENTENCE NEEDS MORE INPUTS, i.e. Logo can't
find a matching right parenthesis.

W &L-53 Commodore 64 Logo Tutorial

Words and Lists

Using Logo Predicates and Creating New Ones: LIST? WORD? MEMBER? and the
Structure of IF, THEN, and ELSE

Testing out PLURAL reveals a number of bugs. Try the following inputs:

PLURAL "CAT
PLURAL "DOG
PLURAL "TURTLE
PLURAL "FATHER
PLURAL "FLY
PLURAL "OCTOPUS
PLURAL "FINCH
PLURAL "FISH
PLURAL "MOUSE
PLURAL "CHILD
PLURAL "FOX
PLURAL [FOX TERRIER]

Two different kinds of bugs can be noted. One is that some of the plurals are not correct.
The procedure's only rule is to tack on an S, and it must be taught more about English
plurals.

The other bug is that it couldn't handle [FOX TERRIER] at all. In this case, Logo
complains that WORD doesn't like [FOX TERRIER] as input in the context of OUTPUT
WORD :NOUN "S in the procedure PLURAL.

Logo, of course, is not biased against cute dogs. It is merely trying to say that WORD
glues pieces of words - not lists - together to make other words.

To solve this problem the procedure doesn't need more knowledge about English, but
rather needs more knowledge about its inputs. We will show a solution to three of the
problems and suggest several other problems as projects for you to work on.

First, the FOX TERRIERS. If NOUN is a list, PLURAL should probably do most of its
work on the last word of the list.

It should OUTPUT a SENTENCE composed of all BUT the LAST word of NOUN, and
the PLURAL of the LAST word of NOUN. The Logo instruction would look like this:

W&L-54 Commodore 64 Logo Tutorial

Words and Lists

IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN

Edit PLURAL and add that line.

TO PLURAL "NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
OUTPUT WORD :NOUN "S

END

Try

PLURAL [BLUE BIRD]
or
PLURAL [RICKETY LADDER]
in addition to
PLURAL [FOX TERRIER]

All along, we've been using IF without any explanation of its structure. In the procedure
you just defined, the IF statement has three parts:

1) The IF itself

2) A condition which may be either TRUE or FALSE (In this case, the condition
is LIST? :NOUN which tells whether it is TRUE or FALSE that NOUN is a list.)
The condition may include modifiers such as NOT, ALLOF, and ANYOF, either
individually or in combination. (See the Glossary for detailed explanations.)

3) The THEN clause: an action to perform if the condition is TRUE. (In this case,
the action is OP SE BL :NOUN PLURAL LAST :NOUN .)

An IF statement can also have an additional two parts when desired.

1) The word ELSE

2) An action to perform if the condition is FALSE

W &L-55 Commodore 64 Logo Tutorial

Words and Lists

Finally, as mentioned earlier, the word THEN can be used optionally between the
condition and the action-if-true.

Thus, an IF statement can take the following four forms.

IF condition action-if-true
IF condition THEN action-if-true
IF condition action-if-true ELSE action-if-false
IF condition THEN action-if-true ELSE action-if-false

{Egr}
The condition always contains a "predicate," a Logo primitive or user procedure that
answers a True-False question by outputting TRUE or FALSE.

In the case of LIST? :NOUN in the procedure you just defined, the True-False question is
"NOUN is a list: true or false?" If the statement is false, LIST? outputs FALSE. If the
statement is true, LIST? outputs TRUE.

You will often need to create your own predicates, and so it is important to become
familiar with their behavior. Type these expressions to Logo:

LIST? PEOPLE
LIST? FIRST PEOPLE
LIST? ITEM 3 PEOPLE

Each time, Logo should announce a result, showing that LIST? output a word, either
TRUE or FALSE, depending on whether the input was a list or not.

You have used several other predicates. When you used NUMBER? :CHTR in
the EASY procedure for QUICKDRAW in project 5, it output TRUE or FALSE
depending on the truth of the statement "CHTR is a number."

In GREET, you used the expression EMPTY? :PERSON. It worked the same way.

And, in the expression IF :CHTR = "F, the equal sign also outputs TRUE or FALSE
depending on the truth of the statement that CHTR equals "F. (The =, like the +, comes
between its inputs.)

The RC? primitive (which takes no inputs), the WORD? primitive (which takes
one input), and the MEMBER? primitive (which takes two inputs) are also predicates.

W&L-56 Commodore 64 Logo Tutorial

Words and Lists

-
You've probably noticed that every predicate has the -? suffix. We will continue to use
this convention throughout the chapter. When you see a primitive or procedure name
ending in -?, you'll know that its behavior is to output TRUE or FALSE.
-

Projects with Predicates

16. Define the predicate, TO VOWEL? :LETTER, that outputs TRUE if LETTER is a
vowel, and FALSE otherwise.

17. Define the predicate, TO YES?, that requests a typed line from the user and outputs
TRUE if that line is a reasonable synonym of "yes," FALSE if the line is a reasonable
synonym of "no," and otherwise prints a message requesting clarification and calls itself
recursively to try again. Decide on the synonyms you will accept.

Ordered Rules

Right now, PLURAL "FOX outputs FOXS. To get it to output FOXES, we might include
a simple test to see if X is the last letter of NOUN. If it is, we should attach ES rather
than S to NOUN.

IF "X = LAST :NOUN OP WORD :NOUN "ES

Where shall we put this new instruction?

Certainly not as the last instruction, because if it came after the line OUTPUT
WORD :NOUN "S, the procedure would never get to it.

In this case, it makes little difference in PLURAL's behavior whether the new instruction
comes first or second.

-
Actually, if you place the new instruction first, PLURAL will take more time to output
the plural of [SILVER FOX] than if you place the new instruction second. (Figure out
why!) But, in a procedure like this, you'd never notice the difference.
-

Commodore 64 Logo Tutorial W&L-57

Words and Lists

Edit PLURAL and define it to look like this:

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
OUTPUT WORD :NOUN "S

END

Now test it out. Does PLURAL give the right plural for FOX? What about [FOX
TERRIER]? And what about [GREY FOX]?

A third problem is teaching the procedure how to handle the really strange cases, like
CHILD, MOUSE, FOOT, and SHEEP. First, we must make a list of the exceptions.

MAKE "EXCEPTIONLIST [CHILD MOUSE FOOT SHEEP OX]

PLURAL must be told something like "If the noun is one of the exceptions. . .”

IF MEMBER? :NOUN :EXCEPTIONLIST...

“...then output the special plural associated with that particular noun."

... OUTPUT special. plural. something. or.other

Where should that special-plural information reside? It could be another procedure:

TO EXPLU :NOUN
IF :NOUN = "CHILD OP "CHILDREN
IF :NOUN = "SHEEP OP "SHEEP
IF :NOUN = "MOUSE OP "MICE
IF :NOUN = "FOOT OP "FEET
etc.

END

In that case the new addition to PLURAL would be:

IF MEMBER? :NOUN :EXCEPTIONLIST OP EXPLU :NOUN

W&L-58 Commodore 64 Logo Tutorial

Words and Lists

Another approach, in some ways simpler, is to put each piece of special plural
information into a box whose name is the noun itself. So we could put CHILDREN into a
box named CHILD, and put SHEEP into a box named SHEEP, etc.

MAKE "CHILD "CHILDREN
MAKE "SHEEP "SHEEP
MAKE "OX "OXEN

Then IF the NOUN were a member of the EXCEPTIONLIST, PLURAL should
OUTPUT the object (THING) inside a box associated with the NOUN. The Logo would
look like this:

IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN

This is strange-looking code, indeed. What can THING :NOUN mean? If :NOUN is
CHILD, then THING :NOUN is the THING of CHILD, and if :NOUN is SHEEP, then
THING :NOUN is the THING of SHEEP.

And what is the THING of CHILD? CHILDREN, because earlier you typed MAKE
"CHILD "CHILDREN. So, too, the THING of SHEEP is SHEEP.

In the first project below, you define PLURAL with the new instruction and test it out.

Projects with PLURAL

18. It matters where you place the new instruction. Below, we show PLURAL defined in
three different ways, with the new instruction placed first, second, and third.

Define PLURAL each way and test it out enough to determine which way(s) work. (Why
do we not bother even trying it as the fourth instruction?)

TO PLURAL :NOUN
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
OUTPUT WORD :NOUN "S

END

Commodore 64 Logo Tutorial W&L-59

Words and Lists

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
OUTPUT WORD :NOUN "S

END

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
OUTPUT WORD :NOUN "S

END

19. To teach PLURAL when to add ES at the end, you sometimes must look at the last
letter of :NOUN and sometimes at the last two letters. Figure out the rule, and then make
PLURAL smart enough to output the correct plural for WISH.

Does it handle [BEST WISH] correctly? Can it handle BOSS? FINCH? Does it still do
the right thing for FOX? Are you satisfied with the way it handles FISH?

20. Teach it to do the right thing with FLY.

21. Does it handle BOY and KEY correctly? If not, fix it.

22. In project 15 above, you wrote a program to generate random sentences out of the
nouns in PEOPLE and the verbs in ACTIONS.

Without changing any of the details of the program, you can add HE, [MY MOTHER],
and certain other nouns and pronouns to PEOPLE, but, as the program stands, it will stop
making grammatical sentences if PEOPLE contains elements like YOU, or [CHARLES
AND DIANA].

This can be fixed. ACTIONS now contains the verbs [LOVES [DREAMS ABOUT]
KISSED HATES [CAN'T STAND] LIKES].

If it were changed slightly, a program similar to PLURAL could add the proper S or D
endings when needed.

W&L-60 Commodore 64 Logo Tutorial

Words and Lists

This is what ACTIONS would need to contain: [LOVE [DREAM ABOUT] KISS HATE
[CAN'T STAND] LIKE]

First, write a procedure, TO FIXVERB :VERB (the logic will be similar to PLURAL, but
not the same) that adds S or ES or nothing to any verb that is its input. Write another

procedure, TO PAST :VERB that adds D or ED (or makes whatever other change is
needed) to put the verb in past tense.

Now write a procedure that takes a subject such as YOU or [THE TURTLE] and figures
out whether the verb needs to be "fixed" or not.

With these procedures you can make a better sentence generator.

23. If you know French, you could do the same thing for French verbs. Of course, the
rules are more complicated, and you will need to do more designing and more
programming.

But you have all the techniques now, and some good strategies. It is probably a good idea
to have small procedures, each of which does a specific job, rather than one large
procedure that does everything.

A set of procedures that conjugate French verbs can be used in a program that generates
French sentences. It can also be used as part of a quiz on French verbs. The next section
will deal with quiz programs.

Quiz Programs: More About REQUEST (RQ)

When REQUEST is encountered in a procedure, the procedure stops and waits until the
user presses <RETURN>. Anything that the person has typed prior to the <RETURN> is
then output by REQUEST as a list.

{Egr}
If the person types a dozen words, REQUEST outputs a 12-word list. If the person types
nothing, REQUEST outputs an empty list. If the person types a single word, REQUEST
outputs a one word list. The important thing to remember is that REQUEST's output is
always a list, never a word.

Commodore 64 Logo Tutorial W&L-61

Words and Lists

Here is a model of a simple quiz program. QUIZ "gives" the quiz, using QA to handle
each question/answer pair. QA is a subprocedure that prints the question, requests an
answer from the quizee and if that answer is the official ANSWER, prints "YUP!" and
stops. If the answer is not judged to be correct, QA prints the correct answer.

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANT'S TOMB?] [GRANT]

QA [WHY DID THE CHICKEN CROSS THE ROAD?] [TO GET GAS]
QA [HOW DO YOU SPELL RELIEF?] [CORRECTLY]

END

TO QA :QUESTION ANSWER
PRINT :QUESTION
IF ANSWER = REQUEST PR [YUP!] STOP
PR SE [NOPE! THE ANSWER IS:] ANSWER

END

On the surface, the logic of the addition quiz below is identical to QUIZ. ADDQUIZ
"runs" the test, calling ADDQ with each number pair. ADDQ's inputs are two numbers to
add. It doesn't need to be told the answer, as QA did, because it can figure out the answer
itself.

Its first line prints the question - for example 7 + 9 = - and waits for the answer at the end
of the line. The second line waits for the user to type an answer and compares it to the
calculated correct answer.

If the user's answer is the same, ADDQ prints YAY! and stops. Otherwise it prints the
correct answer. It seems like it ought to work. Yet it has a bug.

Define ADDQUIZ and its subprocedure ADDQ, try the quiz (by typing ADDQUIZ), and
see if you can make it work properly before reading on:

TO ADDQUIZ
PRINT [TEST YOUR ADDITION]
ADDQ 7 9
ADDQ 8 5
ADDQ 9 8

END

W&L-62 Commodore 64 Logo Tutorial

Words and Lists

TO ADDQ :NUMBER1 :NUMBER2
PRINT1 (SE :NUMBER1 " + :NUMBER2 “’ = ‘)
IF (:NUMBER1 + :NUMBER2) = REQUEST PR [YAY!] STOP (buggy line)
PR (SE "NOPE, :NUMBER1 " + :NUMBER2 " - :NUMBER1 + :NUMBER2)

END

Forgetting that REQUEST always outputs a list is a frequent source of bugs.

{Sgr}
As the procedure ADDQ is currently written, it will never print YAY!. (:NUMBER1
+ :NUMBER2) is a number (and therefore a word), while REQUEST outputs a list - the
two can never be equal.

To make them comparable, we need to change REQUEST's list into a word. We can do
this by taking the FIRST of REQUEST. Thus ADDQ will work if REQUEST is replaced
by FIRST REQUEST or its abbreviation FIRST RQ.

Make that change and verify that ADDQ now works by typing

ADDQUIZ.

Projects with REQUEST

24. In general, there is more than one right way to answer a question, yet QUIZ considers
only one answer correct. Suppose QUIZ were rewritten this way:

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANT'S TOMB?]

[[GRANT] [GENERAL GRANT]]
QA [WHY DID THE CHICKEN CROSS THE ROAD?]

[[TO GET GAS] [FOR FUN] [TO LAY EGGS]]
QA [HOW DO YOU SPELL RELIEF?]

[[CORRECTLY] [ROLAIDS]]
END

In each case, a different number of correct answers has been provided. Rewrite QA to
account for the choices of answers.

Commodore 64 Logo Tutorial W&L-63

Words and Lists

25. The biggest difference between the subprocedure ADDQ for the addition quiz and the
subprocedure QA for the general information quiz is that. ADDQ does not need to be told
the answer to the question. Because number pairs can be selected at random, even the
questions do not have to be specified one by one.

This means that the quiz can keep generating questions as long as desired, without having
had to list all the questions beforehand. Write an addition quiz that poses problems with
randomly selected numbers no larger than 12, and keeps going until the quizee gets ten of
them correct.

26. Add a bit more intelligence to the addition quiz. Let it start by posing addition
problems with very small numbers, say under 4. If a person gets three of them correct, the
program begins giving slightly larger numbers, and so on. The program stops if a person
gets two wrong in a row.

27. Change ADDQ's title line to read TO ADDQ :TRIES :NUMBER1 :NUMBER2 and
change the procedure to allow a person two tries at the same problem before the problem
is changed.

ADDQ should perhaps say TRY AGAIN if the person gets the wrong answer the first
time, but should not give the correct answer until the person gets the problem wrong a
second time. Then it should quit and go on to the next problem.

28. Using the procedures PICK and QA that were defined earlier in the solution to project
15, write a STATESQUIZ program that picks question-answer sets off a pre-defined list.
You might store the information in a form something like this:

MAKE "STATES [[OHIO COLUMBUS] [[NEW YORK] ALBANY] [GEORGIA
ATLANTA]]

29. If you used the exact list shown in project 28, and wrote a working STATESQUIZ, it
may be hard to add states that have multi-word capitals to the list. For example, if you
now type MAKE "STATES LPUT [IOWA [DES MOINES]] :STATES, the chances are
that when STATESQUIZ asks what the capital of Iowa is, it will not accept any answer
as correct.

W&L-64 Commodore 64 Logo Tutorial

Words and Lists

Fix the quiz so that it works, either by redesigning the data-base (:STATES) to be more
consistent, or by making the procedures smart enough to handle the inconsistency.
(Suggestion: redesigning the data-base makes the program simpler.)

30. If you have written a French verb conjugator, you can write a quiz similar to
ADDQUIZ that selects a verb at random from a list, selects a pronoun, also at random,
and asks the person to type in the correct verb form.

If you are more ambitious, you might generate a random sentence, leaving out the verb,
and have the person type in the correct verb.

Composing Logo Objects: SENTENCE, WORD, LIST, FPUT, LPUT, TEST, IFTRUE,
and IFFALSE

Here is a procedure, JUNKMAIL, that uses SENTENCE and its abbreviation SE. Define
JUNKMAIL, complete with extra spaces as shown below.

TO JUNKMAIL :PERSON
PR SENTENCE [DEAR] :PERSON
PR [IF YOU ACT RIGHT NOW, YOU HAVE]
PR [A CHANCE TO WIN A MILLION DOLLARS!]
PR [WINNING TICKETS, ALREADY MADE OUT]
PR [IN YOUR NAME, ARE WAITING FOR YOU.]
PR (SE [THINK,] :PERSON [, WHAT THAT COULD MEAN!])

END

To run it, type JUNKMAIL followed by a list or a word, like this:

JUNKMAIL [MS. RACHEL LEVIN]
JUNKMAIL [ABBY]
JUNKMAIL "MIKE
JUNKMAIL PICK PEOPLE

Notice, first, its handling of spaces. All of the extra spaces you inserted are missing. Also,
because SENTENCE creates a list - outputting DEAR ABBY instead of the word
DEARABBY - it appears to leave a space between its inputs. The space, as noted earlier,
is not a part of the list, but merely a separator that comes between elements of the list.

Commodore 64 Logo Tutorial W&L-65

Words and Lists

{Egr}
SENTENCE always outputs a list. If either input is a word, SENTENCE treats that input
as if it were a one-element list. Thus, all four of these expressions output the sentence
[DEAR ABBY].

SENTENCE "DEAR "ABBY
SENTENCE "DEAR [ABBY]
SENTENCE [DEAR] "ABBY
SENTENCE [DEAR] [ABBY]

The last line of JUNKMAIL contains parentheses. By surrounding the primitive
SENTENCE and the three objects that follow it, those parentheses tell Logo that the
primitive is to accept all three objects as input instead of the two inputs that SENTENCE
normally expects.

-
{Rgr}
A few Logo primitives - in general, the ones that "associatively combine" their inputs,
such as SENTENCE, WORD, and LIST, but also some others such as PRINT and
PRINT1 - have this ability to accept other than their usual number of inputs, when
surrounded by parentheses.

User-defined procedures cannot be given this feature.
-

The procedure has a formatting bug. We would like it to type,

THINK, MIKE, WHAT THAT COULD MEAN!

but the space that separates elements of a list has separated PERSON from the following
comma, with this result:

THINK, MIKE , WHAT THAT COULD MEAN!

When, in PLURAL, you attached S to one of the words in a list, you were solving a
similar problem, but JUNKMAIL adds a new twist.

If we could be certain that PERSON was a Logo word, the change would be simple:

PR (SE [THINK,] WORD :PERSON ", [WHAT THAT COULD MEAN!])

W&L-66 Commodore 64 Low Tutorial

Words and Lists

But this will not work if the input is a list. Since WORD cannot take lists as inputs, the
list would first have to be torn apart (using FIRST or LAST to extract the elements, and
BUTFIRST or BUTLAST to preserve the rest), and then recomposed (using
SENTENCE) after the comma is affixed properly by WORD.

type as one line
PR (SE [THINK,] BL :PERSON WORD LAST :PERSON ", [WHAT THAT COULD

MEAN!])

Now try JUNKMAIL twice, once with a word and once with a list. What happens?

Since the user is free to input either a word or a list, we must take still one more step. We
have a choice. One possibility is to test the input with WORD? or LIST? and choose
which path to follow depending on the outcome.

We can perform either test (WORD? or LIST?) and write the rest of the IF statement
accordingly. So, the logic might be:

IF LIST? :PERSON do-the-list-version ELSE
do-the-word-version

or
IF WORD? :PERSON do-the-word-version ELSE

do-the-list-version

In either case, the result is a horribly long line that becomes nearly impossible to read.
Here is how it might look inside the editor if the LIST? test were used:

IF LIST? :PERSON PR (SE [THINK,] BL :!
PERSON WORD LAST: PERSON ", [WHAT THAT !
COULD MEAN!]) ELSE PR (SE [THINK,] WO!
RD :PERSON ", [WHAT THAT COULD MEAN!])

Logo provides another IF-like construction, TEST, which is useful when several actions
must be performed depending on the truth of the tested conditional. TEST is also useful
when the actions are very long, as they are in this case.

Commodore 64 Logo Tutorial W&L-67

Words and Lists

Here is how the same logic would be written using TEST.

TEST LIST? :PERSON
IFTRUE PR (SE [THINK,] BL :PERSON WOR!

D LAST :PERSON ", [WHAT THAT COULD MEAN!
!])

IFFALSE PR (SE [THINK,] WORD :PERSON !
", [WHAT THAT COULD MEAN!])

{Rgr}
There is a less verbose alternative. Since (SE "ABBY) and (SE [ABBY]) both output the
list [ABBY], SENTENCE can be used to convert the input, whatever form it started in,
into a standard form.

Insert the statement MAKE "PERSON (SE :PERSON) as the first line of JUNKMAIL to
force :PERSON to be a list. The parentheses are needed because SE is taking fewer than
two inputs. Then, since you know that :PERSON is a list, you need not test and can use
just the solution that applies to lists.

LIST, FPUT, and LPUT also compose lists. It is important both to compare their effects
by doing some simple experiments (some will be suggested below) and to know why
anybody would care about the differences.

First, compare SENTENCE and LIST this way:

SE [THIS IS] [A LIST]
LIST [THIS IS] [A LIST]

SENTENCE outputs a list whose elements are the elements of its inputs, whereas LIST
outputs a list whose elements are its inputs.

When is this important? If you are trying to compose a simple list of words, as in an
English sentence, SENTENCE is the right choice. Try these:

SE [THIS IS A] "SENTENCE
SE "THIS [IS A SENTENCE]
(SE "THIS [IS] "A [SENTENCE])
(SE [THIS IS A SENTENCE])
(SE "THIS "IS "A "SENTENCE)

W&L-68 Commodore 64 Logo Tutorial

Words and Lists

Because SENTENCE throws away information about the structure of its inputs, each of
these expressions outputs the same list, [THIS IS A SENTENCE]. Now try the same sets
of inputs using the primitive LIST instead of SE.

LIST [THIS IS A] "SENTENCE
LIST "THIS [IS A SENTENCE]
(LIST "THIS [IS] "A [SENTENCE])
(LIST [THIS IS A SENTENCE])
(LIST "THIS "IS "A "SENTENCE)

The structure of the inputs is fully preserved in the output.

[[THIS IS A] SENTENCE]
[THIS [IS A SENTENCE]]

[THIS [IS] A [SENTENCE]]
[[THIS IS A SENTENCE]]
[THIS IS A SENTENCE]

LIST is the primitive to use when you need to package objects, unaltered, into a list. Like
SENTENCE, LIST usually takes two inputs, but when parenthesized, it accepts any
number greater than zero.

Neither SENTENCE nor LIST allow you to insert an element into an already existing list.
This is the job of FPUT and LPUT.

Each takes an object (word or list) as its first argument and a list as its second argument.
It then inserts the object into the list either to become the first element of the new list (in
the case of FPUT) or the last element of the new list (LPUT), and outputs the new list.
Try these:

FPUT "THIS [IS A SENTENCE]
LPUT "THIS [IS A SENTENCE]
LPUT [FD 50] [[RT 90] [BK 30] [LT 60]]

FPUT and LPUT are important when you are accumulating information gradually and
want to keep track of it on a list. This is the reason why LPUT was the proper primitive
for storing new names of people that GREET met in the FRIENDLY program that you
defined in the section called Some Friendly Introductions.

Commodore 64 Logo Tutorial W&L-69

Words and Lists

Because LPUT created its output by packing the new object (in that case, PERSON) into
a previously existing list (in that case, KNOWN), its output can later be decomposed
back to the original object and list by LAST and BUTLAST respectively.

{Egr}
This inverse relationship of LPUT to LAST and BUTLAST, and of FPUT to FIRST and
BUTFIRST is what makes these two primitives so important. This relationship is best
shown by an illustration and some experimenting.

The relationship can be summarized this way (type each statement below):

If WOL represents any Logo word or list, e.g.,

MAKE "WOL [FD 50]

and OLD.LIST represents any Logo list, e.g.,

MAKE "OLD.LIST [[RT 90] [BK 30] [LT 60]]

then define NEW.LIST this way:

MAKE "NEW.LIST FPUT :WOL :OLD.LIST

Now type

PR :WOL
PR :OLD.LIST
PR :NEW.LIST

and observe that the following two statements are true:

:WOL = FIRST :NEW.LIST
:OLD.LIST = BF :NEW.LIST

Similarly, if you

MAKE "D LPUT :WOL :OLD.LIST

then these statements are true:

:WOL = LAST :D
:OLD.LIST = BL :D

W&L-70 Commodore 64 Logo Tutorial

Words and Lists

An Application of LPUT in Interactive Graphics: RUN

Look back at the procedure EASY that you defined in the early section called Interactive
Graphics. Each time certain characters are pressed, a turtle command is executed.

The screen "remembers" the effect of each command, but the program
has no way of knowing what command it executed last. It could not, for example, run
through the same sequence of commands again to make another copy of the design on the
screen.

Just as FRIENDLY was given a memory, you can add memory to the QUICKDRAW
program. Each time a character is pressed, EASY will run the proper command, and also
store that command on a list.

Using the simplest combination of the strategies in GREET and in EASY, one might
rewrite each line of EASY to look something like this:

IF :CHTR = "F THEN (FD 10 MAKE "HISTORY FPUT [FD 10] :HISTORY)
IF :CHTR = "R THEN (RT 15 MAKE "HISTORY FPUT [RT 15] :HISTORY)
IF :CHTR = "L THEN (LT 15 MAKE "HISTORY FPUT [LT 15] :HISTORY)
etc.

But there is a way of reducing the amount of repetition. If there was a procedure (let us
call it RUN.AND.RECORD) that could take the command as input and be responsible for
both the running and recording of the command, EASY could be written more
economically and more understandably as:

IF :CHTR = "F RUN.AND.RECORD [FD 10]
IF :CHTR = "R RUN.AND.RECORD [RT 15]
IF :CHTR = "L RUN.AND.RECORD [LT 15]
etc.

If RUN.AND.RECORD calls its input MOVE, then the line that records the history of
moves might look like this:

MAKE "HISTORY (LPUT MOVE :HISTORY)

Commodore 64 Logo Tutorial W&L-71

Words and Lists

To run a list that contains a legal Logo command or expression, Logo provides the
primitive RUN.

Thus, the procedure that runs and records each move might look like this:

TO RUN.AND.RECORD :MOVE
RUN :MOVE
MAKE "HISTORY (LPUT :MOVE :HISTORY)

END

To summarize, RUN.AND.RECORD takes an input list containing a Logo command. It
RUNs the input, and then tucks it neatly into a list named HISTORY.

Define this new procedure and test it out a few times. As was necessary in the
FRIENDLY program, you must first create an empty HISTORY list to which
RUN.AND.RECORD can add its new moves.

MAKE "HISTORY []

Now type these commands. (Use <CTRL> P to repeat the line and the key to
change the last few characters. It will save you some typing!)

RUN.AND.RECORD [FD 30]
RUN.AND.RECORD [RT 120]
RUN.AND.RECORD [BK 10]
RUN.AND.RECORD [RT 24]
RUN.AND.RECORD [BK 5]

To print the history list, type

PR :HISTORY

and notice that it contains a record of the commands that generated the picture on the
screen.

[FD 30] [RT 120] [BK 10] [RT 24] [BK 5]

W&L-72 Commodore 64 Logo Tutorial

Words and Lists

Using the History List: Applying a Command (RUN) to Each Element of a List

Whole new possibilities are now opened up. Re-running each of these commands will
copy the design onto the screen a second time.

Alternatively, you can achieve the effect of "undoing" the last command (BK 5) by
erasing the screen, removing the [BK 5] from the history list and running what remains.

We will now create procedures to accomplish these functions.

-
The INSTANT program on your Utilities Disk uses this strategy. Several of the
procedures described in this section are similar to those used in INSTANT. You may
want to study that program. See the Appendix for a description of its use.
-

Both of these functions require that you have a procedure capable of doing the same thing
- in this case, RUNning - to each of the elements of a list.

{Sgr}
Normally, RUN takes a list and executes the command(s) in the list. Here, the list to be
run is composed of sub-lists, each of which must be RUN individually.

The procedure will take the list as input:

TO RUN.ALL :COMMANDS

If the list is empty, then the job is done, so the procedure stops.

IF EMPTY? :COMMANDS STOP

If the list is not empty, then perform the required action to the first element of the list.

RUN FIRST :COMMANDS

And then, following the same logic, deal with the remainder of the list.

RUN.ALL BF :COMMANDS

Commodore 64 Logo Tutorial W&L-73

Words and Lists

Define the procedure RUN.ALL.

TO RUN.ALL :COMMANDS
IF EMPTY? :COMMANDS STOP
RUN FIRST :COMMANDS
RUN.ALL BF :COMMANDS

END

-
{Egr}
RUN.ALL can be thought of as a model for a whole class of procedures. The structure of
this kind of procedure is shown in the "ghost" procedure below:

TO X.ALL :LIST title with input
IF EMPTY? :LIST STOP condition for stopping
Y FIRST :LIST action to take with first element
X.ALL BF :LIST recursive call with BF input

END end
-

Type these commands:

RUN.ALL :HISTORY
RUN.ALL :HISTORY
REPEAT 2 [RUN.ALL :HISTORY]
PR :HISTORY

The picture has changed, but the history list has not. Why? Because RUN.ALL did not
record any of the commands it ran; it just ran them.

To "undo" a command, we clear the screen and run all but the last element of the history
list. Of course, if the history list is already empty, we cannot undo any more and so
should just stop.

Here is a procedure which does that:

TO UNDO
IF EMPTY? :HISTORY STOP
MAKE "HISTORY BL :HISTORY
DRAW
RUN.ALL :HISTORY

END

W&L-74 Commodore 64 Logo Tutorial

Words and Lists

Clear the screen with DRAW and type RUN.ALL :HISTORY. Now type UNDO a few
times to see its effect.

Projects with History Lists

31. Edit EASY to take advantage of RUN.AND.RECORD and UNDO. Some changes
need to be made in addition to inserting the two new procedures.

Try out all of the features - the old as well as the new - in a variety of combinations to be
certain they work together properly. In particular, make certain that UNDO does the right
thing when pressed right after you have pressed the D key to erase the screen.

To start up the program with an empty history list, it might be convenient to define this
startup procedure:

TO STARTUP
MAKE "HISTORY []
QUICKDRAW

END

32. Add right-curving circles and left-curving circles to QUICKDRAW.

Substituting One Word for Another in a Sentence: A Procedure with Two Recursive
Calls

We will design a procedure that will work like this:

SUBST "DOGS "CATS [WE THINK DOGS ARE GREAT]
RESULT [WE THINK CATS ARE GREAT]
SUBST "X PICK PEOPLE [WE LOVE X MORE THAN ANYBODY]
RESULT: [WE LOVE SANDY MORE THAN ANYBODY]
SUBST "ADV PICK ADVERBS [COLORLESS GREEN IDEAS SLEEP ADV]
RESULT: [COLORLESS GREEN IDEAS SLEEP FURIOUSLY]

It will serve as a building block for a variety of language activities, and a model for a
procedure that can work Mad-Libs.

What is its design? It takes three inputs: a key word it is looking for, a word to replace
that one with, and a sentence as a context in which to perform the replacement.

Commodore 64 Logo Tutorial W&L-75

Words and Lists

This version of SUBST will replace all occurrences of the key word with the replacement
word. Described concretely, it can look through sentences like [WE THINK DOGS ARE
GREAT] and wherever it finds DOGS, it substitutes
CATS.

The logic is absolutely like the recursive model shown before. Let's review the model:

title with inputs: TO SUBST :KEY :NEW :CONTEXT
condition for stopping: IF :CONTEXT =[] OP []
action to take with first element: if key replace with new
recursive call with BF input: continue looking
end END

The title line and stop condition are straightforward. If there is nothing in the sentence
CONTEXT, there is nothing to substitute, so the procedure outputs an (identical) empty
sentence.

The remaining two lines introduce a new twist. The action to take with the first element is
clear: if it is the key word :KEY that we are looking for

IF (FIRST :CONTEXT) = :KEY

the procedure must replace it with :NEW. Replacing the first element of a list means
keeping the butfirst. SUBST must output a sentence composed of the new first element
with the butfirst of the original CONTEXT. This, by itself, is

OP SE :NEW BF :CONTEXT

But the object is to catch every occurrence of KEY in CONTEXT. SUBST changed one
occurrence at the beginning, but the code line we just wrote takes the butfirst of the
CONTEXT without checking further.

Instead of BF :CONTEXT itself, what we really want is the result of a continued
substitution of NEW for KEY in that BF :CONTEXT. So the action really is

OP SE :NEW SUBST :KEY :NEW BF :CONTEXT

W&L-76 Commodore 64 Logo Tutorial

Words and Lists

and the logic of that line is

IF (FIRST :CONTEXT) = :KEY OP SE :NEW SUBST :KEY :NEW BF :CONTEXT

If there is no substitution to make, of course, SUBST will keep the first element, but it
still must check further in the sentence for later occurrences of the key word. The action
in this case is nearly identical to the previous action except that the first element of the
list is not changed to NEW but kept as is:

OP SE FIRST :CONTEXT SUBST :KEY :NEW BF :CONTEXT

Here is the entire procedure:

TO SUBST :KEY NEW :CONTEXT
IF :CONTEXT = [] OP []
IF (FIRST :CONTEXT) = :KEY OP SE :NEW SUBST :KEY :NEW BF

:CONTEXT
OP SE FIRST :CONTEXT SUBST :KEY :NEW BF :CONTEXT

END

And here are some examples of its use.

SUBST "VERB "LOVES [PAUL VERB CINDY]
SUBST "VERB PICK ACTIONS [THE TURTLE VERB DALE]
SUBST "NAME "CHRIS [NAME KISSED NAME]
SUBST "NAME PICK PEOPLE [NAME WON'T SPEAK TO NAME]

type as one line
SUBST "ADV PICK [STEALTHILY CREATIVELY [WITH EXCEPTIONAL SPEED]

HUNGRILY] [CATS CAN CLIMB TREES ADV BECAUSE OF THEIR
SHARP CLAWS]

{Sgr}
Although the procedure does everything it is advertised to do, it is not quite right for
Mad-Libs. The problem is that in a command like PR SUBST "NAME PICK PEOPLE
[NAME WON'T SPEAK TO NAME], both NAMEs are replaced by the same pick from
people.

Why? Because the picking is done first. SUBST is presented with one name, selected at
random by PICK, to use everywhere it finds the key word.

SUBST is useful as it is (because sometimes it is necessary to specify a particular
replacement to make), but for Mad-Libs it would be better to have a procedure that
looked for a key word and each time it found one, selected at random from a list of
potential substitutes.

Commodore 64 Logo Tutorial W&L-77

Words and Lists

Such a procedure would need inputs giving the key-word and context as before, but
instead of having a designated substitute, it should be given a list of alternates from
which to pick each time the need arises.

TO MAD :KEY :ALT :CONTEXT

The stop rule would be the same.

IF :CONTEXT = [] OUTPUT []

And if there's no substitution to make, the action is the same.

OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

Only when a KEY is found must MAD behave differently from SUBST. Compare the
corresponding lines.

IF (FIRST :CONTEXT) = :KEY OP SE :NEW SUBST :KEY :NEW BF :CONTEXT
IF (FIRST :CONTEXT) = :KEY OP SE PICK ALT MAD :KEY :ALT BF :CONTEXT

SUBST is given a fixed substitute as input, whereas MAD picks the alternate itself
whenever it needs to. Otherwise, they are identical.

Here is the finished procedure:

TO MAD :KEY :ALT :CONTEXT
IF :CONTEXT = [] OUTPUT []
IF (FIRST :CONTEXT) = :KEY OP SE PICK ALT MAD :KEY :ALT BF

:CONTEXT
OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

END

And here are some examples of its use.

MAD "NAME PEOPLE [NAME KISSED NAME]
MAKE "ADVERBS [STEALTHILY CREATIVELY [WITH EXCEPTIONAL SPEED]

HUNGRILY]
MAD "ADV :ADVERBS [DOGS DO NOT CLIMB TREES ADV OR ADV]
MAD "V ACTIONS [PAT V CHRIS, BUT DALE V DANA.]

W&L-78 Commodore 64 Logo Tutorial

Words and Lists

More can be done with MAD. Since MAD creates and outputs an object (rather than just
printing its finished product), that object can be processed further. Try this:

MAD "NAME PEOPLE [NAME V NAME]

The object it produced is something like [SANDY V THE TURTLE]. If that were made
the input to MAD, the V could be replaced with some action. This can be done in one
step.

MAD "V ACTIONS MAD "NAME PEOPLE [NAME V NAME]

The output from MAD "NAME PEOPLE [NAME V NAME] becomes the third input to
MAD "V ACTIONS ________ .

Try this

MAD "ADV :ADVERBS MAD "X PEOPLE MAD "V ACTIONS [X V AND V X ADV
AND ADV]

Projects with Mad-Libs

33. Create a MADLIB procedure that takes one input, a text, and looks for Verbs, Nouns,
Proper Names, ADVerbs, and ADJectives to substitute. You might use [THE ADJ N V
MY ADJ N PN ADV] as a test text.

34. Punctuation in a sentence will interfere with MAD the way it is now written. For
example, MAD "V ACTIONS [PAT V CHRIS, BUT DALE V DANA.] will work, but
MAD "PN PEOPLE [PN LOVES PN, BUT PN CAN'T STAND PN.] will not. (You may
want to try it to see it fail.)

The substitution must be more sophisticated to handle punctuated sentences. It must look
at each word in the sentence and perform two tests to determine if it is a key word. Then,
after choosing an alternative, the procedure must affix the proper punctuation to that new
word.

Write a version of MAD that works correctly in both of the contexts shown above.

Commodore 64 Logo Tutorial W&L-79

Words and Lists

35. As MADLIB is now written, it finds substitutes for a fixed set of key words.

A slightly more versatile program would take two inputs, the context (as always) and a
list of keywords to look for. Then it would systematically look through the context for
instances of each of the keywords and make the proper substitutions.

Write a procedure that will do this.

Understanding Language: Searching for Key Words and Matching Sentences to
Templates ALLOF, ANYOF

FRIENDLY, when we last left it, expected a nice, tame answer to its question, "WHAT'S
YOUR NAME?" It would respond unintelligently if you typed MY NAME IS PAUL or
NONE OF YOUR BUSINESS when it asked. Here is a scenario that looks more
intelligent, as if FRIENDLY really understands language.

FRIENDLY
WHAT'S YOUR NAME?
MY NAME IS PAUL.
Hl, PAUL! IT'S NICE TO MEET YOU.

FRIENDLY
WHO ARE YOU?
NONE OF YOUR BUSINESS
YOU SEEM TO BE IN A BAD MOOD. BYE.

FRIENDLY
WHAT'S YOUR NAME?
WHAT'S IT TO YOU?
I WAS JUST CURIOUS.

FRIENDLY
MY NAME IS LOGO. WHAT'S YOURS?
PLEASE CALL ME PAUL.
GOOD TO SEE YOU AGAIN, PAUL.

W&L-80 Commodore 64 Logo Tutorial

Words and Lists

FRIENDLY
HI, WHAT'S YOUR NAME?
PAUL
AH, YOU'RE BACK. Hl, PAUL.

FRIENDLY is exhibiting a number of behaviors we regard as intelligent. It is not
confused by punctuation. Also, its phrasing is flexible. But, most important, it has always
responded appropriately.

How can we design it so that it will reliably recognize the name in an arbitrary phrase?
We might start by trying to figure out how people do that.

Do we listen to all the words in the sentence and look up each one on a
list of possible names? Unlikely. If a Martian said to you "Hi, my name is Xqpsnpfltk,"
you might not be able to repeat the name, but you'd know you were being told one.

{Rgr}
You'd know because you understood the rest of the sentence and realized that whatever
that sound was that came at the end, that had to be this creature's name.

All is not hopeless. Although we cannot expect to write a procedure that is capable of
understanding all of English, we can analyze the likely language that this particular
conversation will contain.

If the procedure encounters something we have anticipated, it can give a specific
appropriate answer. Otherwise, it will have to give a neutral answer.

Here's how it might work. First we list some possible phrases it may see. One limitation
we will impose is that people always respond only with their first name, and not with first
and last, or title and last, etc. (That complication comes later.)

Cooperative responses might include:

<name>
My name is <name>
People call me <name>
Please call me <name>
<name> is my name
I am <name>

Commodore 64 Logo Tutorial W&L-81

Words and Lists

Uncooperative responses should include:

None of your business!
I won't tell you.
I don't want to tell
I'm not telling you.
What's it to you?
Go away

Let's work with the cooperative responses first. Suppose we create a series of templates
based on likely response patterns. If we had a procedure that could match what the person
types to each of the templates, and, where it found a match, record what word
corresponded to the "wild card" <name>, that would be a big help.

For example, suppose we had a procedure MATCH? which would tell if a sentence
matched a template. The actual sentence

MATCH? [MY NAME IS PAUL]

used with the template

[MY NAME IS @NAME]

(with the wild card identified by the at-sign) would give the result TRUE.

Suppose, furthermore, that if the sentence and template do match, then the matching word
in the sentence (in this case, PAUL) and the name of the wild card it corresponded to (in
this case, there is only one, @NAME) are saved in a special variable named
@@MATCHES. Thereafter, @@MATCHES would have the value [[@NAME PAUL]].

Let's also suppose we have a way of looking for a wild card in this list and outputting the
word associated with it; thus LOOKUP "@NAME would output PAUL. If we had such
procedures, then we could write a language interpreter that looked like this.

W&L-82 Commodore 64 Logo Tutorial

Words and Lists
TO OUTPUT.NAME :SENT

IF MATCH? :SENT [MY NAME IS @NAME] OP LOOKUP "@NAME
:@@MATCHES

IF MATCH? :SENT [@NAME IS MY NAME] OP LOOKUP "@NAME
:@@MATCHES

IF MATCH? :SENT [I AM @NAME] OP LOOKUP "@NAME
:@@MATCHES

IF MATCH? :SENT [@JUNK CALL ME @NAME] OP LOOKUP "@NAME
:@@MATCHES

IF 1 = COUNT :SENT OP FIRST :SENT
OP [I WAS JUST CURIOUS]

END

The first three lines explain themselves. If the sentence typed by the person to
FRIENDLY is of any of those forms, a match will occur, and LOOKUP will find the
name.

The fourth line has two wild cards in it. It takes care of both PLEASE CALL ME PAUL
and PEOPLE CALL ME PAUL.

The fifth line assumes that if the person answers with only a single word, that word is
probably the name. And the sixth line is a "punt." If no other strategy worked, this
answers "neutrally" with a nothing answer.

There are some problems with this procedure as it stands now. The most striking is that it
can supply either the right answer (a name) which must then be tucked into some reply by
GREET (depending, for example, on whether GREET has met the person before or not)
or an entire reply which should not be further altered.

GREET, of course, can tell the two situations apart, as the name is a word, and the full
reply is a list.

Second, we have not at all dealt with the "uncooperative responses." More on those later.
Meanwhile, how do MATCH? and LOOKUP work?

MATCH? will need two inputs, the sentence in question, and the template to check it
against.

TO MATCH? :SENTENCE :TEMPLATE

Commodore 64 Logo Tutorial W&L-83

Words and Lists

It will need to make sure that the variable @@MATCHES is cleaned out before checking
to see if the sentence matches the template.

MAKE "@@MATCHES[]

Finally, it performs the check.

OP CHECK :SENTENCE :TEMPLATE

So the procedure looks like this:

TO MATCH? :SENTENCE :TEMPLATE
MAKE "@@MATCHES []
OP CHECK :SENTENCE :TEMPLATE

END

But we've put off the major part of the work! How does CHECK check?! It, too, must
take both the sentence and template as inputs.

TO CHECK :S :T

If these two do match, it should output TRUE. If they don't, it should output FALSE.
(This is not, of course, all it does. It must also identify what element of the sentence
corresponded to the "wild card" in the template, but we will worry about that later.) A
trivial case of matching is when both the sentence and the template are empty.

IF ALLOF :S = [] :T = [] OP "TRUE

{Egr}
The empty test is very often the important stop condition for recursive procedures
manipulating language.

If they are not both empty, but one of them is empty, then they surely do not match.

IF ANYOF :S = [] :T = [] OP "FALSE

W&L-84 Commodore 64 Logo Tutorial

Words and Lists

If the first element of the sentence and the first element of the template are the same, then
a match is possible, but not definite. In this case, the answer is to be found in checking
the remaining elements of the sentence and the template for a match.

IF (FIRST :S) = FIRST :T OP CHECK BF :S BF :T

Likewise, if the first element of the template is a wild card, then a match is possible, but
not definite. Again, the answer is to be found in checking the remaining elements of the
sentence and the template for a match.

In this case, however, the procedure must do one additional thing. It must record what the
first element of the sentence was when it encountered the wild card as the first element of
the template.

IF WILD? FIRST :T (RECORD FIRST :T FIRST :S) OP CHECK BF :S BF :T

Notice that both WILD? and RECORD are just tossed in there as if we already knew how
they should work. We don't, and Logo has no such primitives to help us with, but we can
design those procedures later.

At present, all we are trying to do is handle the top level logic of CHECK. Surely, if
WILD? and RECORD existed, this line would be what we want.

Finally, if the first of T is neither wild nor matches the first of S, then there is no match,
so we output FALSE.

This is how the procedure looks so far.

TO CHECK :S :T
IF ALLOF :S = [] :T = [] OP “TRUE
IF ANYOF :S = [] :T = [] OP "FALSE
IF (FIRST :S) = FIRST :T OP CHECK BF :S BF :T
IF WILD? FIRST :T (RECORD FIRST :T FIRST :S) OP CHECK BF :S BF :T
OP "FALSE

END

Commodore 64 Logo Tutorial W&L-85

Words and Lists

What WILD? does depends on how we choose to indicate a wild card, Since we have
decided that wild cards begin with the at-sign character, WILD? need only check for that
character as the first character of its input.

TO WILD? :WORD
OP "@ = FIRST :WORD

END

RECORD creates a list of the key and the matched word, and tucks that list into
@@MATCHES to be retrieved when needed by LOOKUP.

TO RECORD :KEY :MATCHEDWORD
MAKE "@@MATCHES LPUT LIST :KEY :MATCHEDWORD

:@@MATCHES
END

And LOOKUP will look systematically through each element of @@MATCHES until it
finds one whose first element is the key word. It will then output the second element.
Notice how similar its structure is to the model recursive procedures you have seen
before.

TO LOOKUP :KEY :LIST
IF :LIST = [] OP "
IF :KEY = FIRST FIRST :LIST OP LAST FIRST :LIST
OP LOOKUP :KEY BF :LIST

END

Now try running OUTPUT.NAME a few times.

OUTPUT.NAME [MY NAME IS ASHER]
OUTPUT.NAME [PLEASE CALL ME ISHMAEL]
OUTPUT.NAME [WHAT'S IT TO YOU?]
OUTPUT.NAME [PAUL]

Projects with Language Understanding

36. Add OUTPUT.NAME to the FRIENDLY program. FRIENDLY must still be capable
of responding differently to old friends and new people, and must have the added ability
to pull names out of the contexts in which they are typed. Do not yet worry about other
details (e.g. punctuation) yet.

W&L-86 Commodore 64 Logo Tutorial

Words and Lists

37. To add a bit more sensitivity to the uncooperative responses, you might design a
procedure that looks for "negative words" in the sentence, words like WON'T, NONE,
DON'T, NOT, and the like, and outputs a "neutral" response to a negative.

Such a response might be YOU SEEM TO BE IN A BAD MOOD, or SORRY I ASKED.
Add that to OUTPUT.NAME in such a way that no other changes need to be made to
GREET or FRIENDLY.

38. Wherever fixed phrases are now used, teach the program to vary them using PICK
and a phrase list. If it is necessary to embed the name in a phrase, SUBST can do the
work.

39. Finally, fix the program not to get stumped by punctuation.

40. As CHECK is currently written, [MY NAME IS @NAME] would match [MY
NAME IS ASHER] but would not match [MY NAME IS ASHER LEV] because only
one word can match a wild card.

Likewise, [@JUNK CALL ME @NAME] would not match [CALL ME ISHMAEL],
because some word must be present to match @JUNK.

A better CHECK program would recognize two kinds of wild cards, one that matches to
exactly one word in the sentence (the situation we already have), and another that
matches to any number of words in the sentence, including 0.

The new wild card would have to be symbolized differently, perhaps by a number-sign
prefix. So CHECK would be able to tell that both CALL ME ISHMAEL and MY
CLOSE FRIENDS CALL ME SIR OLIVER match the template [#JUNK CALL ME
#NAME], but that [MY NAME IS HARRIET BEECHER STOWE] fits another template.

Commodore 64 Logo Tutorial W &L-87

S - SPRITES
Introduction

By now, you've probably begun to wonder whether turtle graphics was more than a
simple amusement. Perhaps you wanted to make the turtle look a bit more interesting.
Maybe you even wished you could control more than one.

You're in luck! Commodore 64 Logo gives you the ability to design and control eight
separate moveable objects called sprites.

Sprites can do anything the turtle can do - hide, draw, write text on the graphics screen,
and so on. (In fact, the turtle is really a sprite, too.) Moreover, sprites open up new
possibilities for animation and 3-D simulation. To find out more about sprites and how to
use them, read on.

Getting Ready To Use Sprites

In order to use sprites, place the Utilities Disk in the drive. Then, type

READ "SPRITES

Next, get into draw mode by typing

DRAW

If the turtle is not visible now, type

ST or SHOWTURTLE

{Egr}
Each sprite is identified by its own sprite number (0-7). The turtle is sprite 0. When the
SPRITES file is first read in and turtle graphics commands (i.e. FORWARD, BACK,
RIGHT, etc.) are typed, sprite 0 (the turtle) is the sprite that responds.

Talking to Sprites: TELL

Sprites will obey the sprite commands covered in this chapter as well as regular turtle
graphics commands.The TELL command lets you use any of the eight available sprites.
For example, after the SPRITES file is read and DRAW is typed, the only sprite that can
be seen on the screen is sprite 0, the turtle. Type the following:

Commodore 64 Logo Tutorial S-1

Sprites

TELL 1

Now sprite 1 will respond to any turtle graphics or sprite commands that are typed in. If

ST

is typed, sprite 1 will appear at the center of the screen. Sprites 1 through 7 start out
hidden with pens up. Since no special shapes have been defined at this point, sprites 1
through 7 will appear as solid boxes. This shape can be changed as will be seen later.

If sprite 0 (or some other sprite) is already at the center of the screen, it may be necessary
to move sprite 1 (with a FD or BK command) in order to see it better. For example, type
FD 100. Before sprite 0 will respond to turtle or sprite commands again, TELL 0 must be
typed in.

In general, TELL makes a particular sprite (0 through 7) the "current" sprite, i.e., the
sprite that responds to any turtle graphics or sprite commands. When Logo starts, sprite 0
(the turtle) is the current sprite. This sprite remains current until another sprite is
specified with the TELL command.

A Program Using TELL

The following three procedures illustrate how one might use TELL to give commands to
different turtles.

Suppose you wanted to program a race between a kangaroo and a bug. You
can read in pre-defined shapes from the Utilities Disk to replace the box shapes. Type in

READ "ANIMALS

to give the sprites animal shapes. (The various predefined sprite shapes are listed later.)
The file ANIMALS only contains variables with the names of animals. Each name has a
value corresponding to a sprite. For instance, KANGAROO has a value of 2. ANIMALS
automatically reads in the shapes file ANIMAL. SHAPES. The other shape files,
VEHICLES, ASSORTED, RUNNER, and SHAPES, also use this two file setup.

The following procedure might be used to move the kangaroo (sprite shape 2).

S-2 Commodore 64 Logo Tutorial

Sprites

TO HOP :N
RT 90
REPEAT :N [FD 10 LT 90 FD 10 RT 90 FD 3 RT 90 FD 10 LT 90]
LT 90

END

Procedure HOP will cause a sprite to take a big step to the right, jump up, take a little
step to the right, and jump down again a specified number of times. Before you use HOP
or any procedure which is to affect a sprite's screen movement, be sure to type ST so the
sprite will be displayed (i.e., TELL 2 ST HOP 10).

The next procedure could be used to move the bug (sprite shape 3 on the file
ANIMALS).

TO CRAWL :N
RT 90
REPEAT :N [FD 1 FD RANDOM 24]
LT 90

END

Procedure CRAWL will cause a sprite to take a small step to the right, and then move a
random number of steps to the right. Before you use CRAWL, don't forget to TELL 3 ST
first.

Finally, here is the RACE procedure:

TO RACE
TELL 2 SETXY -125 30
TELL 3 SETXY -125 (-30)
REPEAT 30 [TELL 2 HOP 1 TELL 3 CRAWL 1]

END

In the race procedure, sprites 2 and 3 start out toward the left margin of the screen and
then move across the screen in their unique ways. HOP, CRAWL, RACE, and several
other procedures described in this section are in the file SPRITEDEMOS.

Type the following to load SPRITEDEMOS into the workspace.

READ "SPRITEDEMOS

Commodore 64 Logo Tutorial S-3

Sprites

Then type

RACE

to see the race between the kangaroo and the bug.

Which sprite: WHO

The WHO command returns the number of the current sprite. For instance, type

WHO

and Logo's response should be RESULT: 3, since that is the last sprite used in RACE. If
you have used TELL in between running RACE and typing WHO, the number you used
with TELL should be the result. Type

TELL 2
WHO

and Logo will respond

RESULT: 2

The following procedure, ASK, lets you give commands to a sprite without changing the
current sprite.

TO ASK :N :COMMAND.LIST
LOCAL "CURRENT
MAKE "CURRENT WHO
TELL :N RUN :COMMAND.LIST
TELL :CURRENT

END

The ASK procedure takes as arguments a sprite number (0 through 7) and a list of
commands that the sprite is to perform. ASK then uses a local variable to save the
number of the current sprite (which can be identified by WHO). Next, the specified sprite

(N) is made the current sprite, and the list of commands is run. Finally, the sprite that was
current when the procedure was first called is again made current.

S-4 Commodore 64 Logo Tutorial

Sprites

ASK can be found in the files SPRITEDEMOS and SPRITES. Type the following to see
the bug change color, draw, and hop:

ASK 3 [PC 4 PD HOP 10]

Now type WHO. The response RESULT: 2 specifies that sprite 2 is still the current sprite
even though we used sprite 3 with the ASK procedure.

Sprites and the Graphics Screen: TB?

Like the turtle, sprites are distinct from the graphics screen behind them. Sprites can
move around the screen without disturbing any images that have been drawn on the
graphics screen.

For example, if several lines have been drawn on the screen, a sprite can move or land
anywhere without changing or erasing anything. Similarly, the presence of images on the
graphics screen doesn't necessarily change the behavior of a sprite.

There is a way, however, for a sprite to "interact" with the graphics screen. The TB?
procedure in the SPRITES file (which you have already read in) gives the value TRUE if
the current sprite is positioned over a filled-in dot on the graphics screen and gives the
value false if the sprite is positioned over a dot that is the screen background color.

The following three procedures cause a sprite to move randomly around the inside of a
square. TB? is used to insure that the sprite does not escape. If the sprite touches a side of
the box (i.e. if TB? gives the value "TRUE, the sprite changes direction and continues
moving through the interior of the box, rather than crossing the boundary and escaping.
The procedures are in the file "SPRITEDEMOS. If you have not already done so, type

READ "SPRITEDEMOS

to load the file, and

TRAP 100

to run the program.

Commodore 64 Logo Tutorial S-5

Sprites

TO TRAP :100
CS BACKGROUND 3
PENCOLOR 0 ST SETH 0
BOX :SIDE
PU
FD :SIDE/2 RT 90
FD :SIDE/2 LT 90 PD
PENCOLOR 6
TRAPLOOP

END

TO BOX SIDE
REPEAT 4 [FD :SIDE RT 90]

END

TRAP sets up the screen and the current sprite for drawing. TRAP then tells the current
sprite to draw a box and get inside of it, and then calls on TRAPLOOP to move the
current sprite around inside of the box.

TO TRAPLOOP
IF RC? STOP
IF TB? BK 1 RT RANDOM 180
FD 1
TRAPLOOP

END

TRAPLOOP moves the current sprite around inside the box until any key is pressed.
Each time the current sprite moves forward, TB? is called to check if if is touching a dot
on the graphics screen. If the current sprite is touching a side of the box, TB? will give
the value TRUE. In that case, the sprite will move back into the box and will be assigned
a random direction in which to continue.

{Sgr}
Note: TB? works only in SINGLECOLOR mode.

Sprite Shapes

When Logo starts up, sprites 1 through 7 are automatically given box shapes. However,
as we have already seen, a sprite can be any shape.

Commodore 64 Logo comes with five sets of seven sprite shapes.

S-6 Commodore 64 Logo Tutorial

Sprites

- ANIMALS Animal shapes
- VEHICLES Vehicle shapes
- SHAPES Geometric shapes
- ASSORTED Assorted shapes
- RUNNER Shapes designed for animation of a woman running

Each of these names has two files associated with it, one a normal Logo file and the other
a shape file. The Logo file is loaded as usual. For example, READ "ANIMALS will load
the file ANIMALS.LOGO. After loading, it will automatically load the shapes file, in this
case ANIMALS.SHAPES.

The ANIMALS.SHAPES file actually contains the shapes; the ANIMALS file contains
only seven variables (DINOSAUR, KANGAROO, BUG, etc.) with values ranging from
1 to 7 corresponding to the sprite shapes. The purpose is to make the sprites easier to use,
allowing you to type ASK :DINOSAUR [FD 10] instead of having to know that the
dinosaur is sprite 1.

If you want only the shapes, but not the associated variables in the ANIMALS file, use
the READSHAPES procedure in the file named SPRITES (i.e., READSHAPES
"ANIMALS). You can also load the shapes in directly by using the command BLOAD
"ANIMALS.SHAPES, which is exactly what READSHAPES does. Again, there is a
complete list of built-in sprite shapes near the end of this chapter.

Changing Sprite Size: BIGX, BIGY, SMALLX, SMALLY

Four of the commands in the SPRITES file, BIGX, BIGY, SMALLX, and SMALLY, let
you change the proportions of sprites.

When the file SPRITES is first read in, the sprites are the smallest size (i.e. with size
SMALLX and SMALLY). Typing BIGX when the current sprite is the smallest size will
cause it to double its width by expanding to the right; typing BIGY will cause the current
sprite to double its height by expanding downward.

Conversely, typing SMALLX after the current sprite has already been extended in the X
(width) direction, will cause it to halve its width by shrinking to the left; typing
SMALLY when the current sprite has been expanded in the Y (length) direction will
make it halve its length by shrinking upward.

Commodore 64 Logo Tutorial S-7

Sprites

In summary, each sprite has four possible sizes:

SMALLX SMALLY - The smallest sprite size, which is the default

SMALLX BIGY - Smallest width, doubled height

BIGX SMALLY - Doubled width, smallest height

BIGX BIGY - Doubled width, doubled height

See the dinosaur and submarine demonstration programs documented at the end of this
chapter for examples of effective use of the sprite size commands.

Changing Sprite Shapes: SETSHAPE

When a file of sprite shapes is loaded, each sprite has a unique shape. Using the
SETSHAPE command, it is possible to give more than one sprite the same shape.
SETSHAPE takes a sprite shape number (0 through 7) as its argument and sets the shape
of the current sprite to the sprite shape which has that number.

For example, in order to program a family of three dinosaurs going out for a picnic, three
sprites would have to have the dinosaur shape, which is sprite shape 1 from the shape file
ANIMALS. After ANIMALS is first read in, sprite 1 will have the dinosaur shape, sprite
2 will have the kangaroo shape, and sprite 3 will have the bug shape.

After typing in

TELL 2 SETSHAPE 1
TELL 3 SETSHAPE 1

sprites 1, 2, and 3 will have the same shape (i.e. the dinosaur shape from the file
ANIMALS).

Note: If another file of sprite shapes were loaded, sprites 1, 2, and 3 would still all have
shape 1. However, shape 1 would now correspond to the new sprite shape 1.

For example, if the shape file VEHICLES were read in by typing

READSHAPES "VEHICLES

S-8 Commodore 64 Logo Tutorial

Sprites

sprites 1, 2, and 3 would all have the truck shape, which is shape 1 in the VEHICLES
file.

The following two procedures have already been read in from the SPRITEDEMOS file.
Their purpose is to line up sprites 1 through 7 on the right side of the screen, displaying
each sprite in its corresponding sprite shape. These procedures, SHOW and
SHOWLOOP, are especially convenient to use after a file of sprite shapes has just been
loaded because they set the sprites back to their original sprite shapes and display all of
the sprites.

TO SHOW
LOCAL "OLD
MAKE "OLD WHO
TELL 0 HT
SHOWLOOP 1 120 100
TELL :OLD

END

TO SHOWLOOP :CURRENT :X :Y
IF :CURRENT = 8 STOP
TELL :CURRENT SETSHAPE :CURRENT
SETXY :X :Y
SMALLX SMALLY ST
SHOWLOOP :CURRENT + 1 :X :Y - 30

END

SHOW uses a local variable to save the current sprite and then calls on SHOWLOOP to
display the sprites, beginning with sprite 1 at position (120, 100). At the end of SHOW,
the sprite that was originally current is made current again. Try typing SHOW.

Identifying the Shape of the Current Sprite: SHAPE

The SHAPE primitive gives the sprite shape number of the current sprite. After running
the SHOW procedure, you would get the following responses to the SHAPE command:

TELL 0 SHAPE
RESULT: 0
TELL 1 SHAPE
RESULT: 1
TELL 2 SHAPE

RESULT 2
etc.

Commodore 64 Logo Tutorial S-9

Sprites

If you had typed the above before typing SHOW, the response for sprites 2 and 3 would
have been RESULT:1 because of the SETSHAPE 1 commands used earlier. To see that
SHAPE tells you the sprite's shape but not necessarily the sprite's number, type

TELL 4 SHAPE
SETSHAPE 6

Now you will get the following response to the SHAPE command:

SHAPE
RESULT: 6

To see that you are still using sprite 4 (which has shape 6) and not sprite 6, type WHO.
The response should be RESULT: 4. Remember, WHO tells you which sprite is current,
and SHAPE tells you which shape the current sprite is carrying.

The Sprite Editor: EDSH

Commodore 64 Logo comes with five files of built-in sprite shapes: ANIMALS,
VEHICLES, SHAPES, ASSORTED, and RUNNER. Using the sprite editor in the file
SPRED, it is possible to modify these shapes and to create original sprite shapes.

To use the sprite editor, type

READ "SPRED

The file SPRED also contains the sprite commands that are in the file SPRITES.
Therefore, reading in SPRED will load all the commands necessary to use both sprites
and the sprite editor.

{Egr}
Remember to tell Logo which sprite shape you want to edit. (Use the TELL command.)
Be careful! The shape used by the current sprite at the time EDSH is typed will be edited.
If, for example sprite 7 were current and had been assigned shape 5 with a SETSHAPE 5
command, the shape that would be edited would be shape 5, not shape 7.

If you have just read the sprite editor into a new workspace, the current sprite is sprite 0,
the turtle. If you don't use TELL, you might temporarily edit the turtle shape but be
unable to save your design.

S-10 Commodore 64 Logo Tutorial

Sprites

Once the file SPRED has been read in, the sprite editor is invoked with the command

EDSH

which is short for EDitSHape. When EDSH is typed, several things happen. First, the
screen clears and the current sprite appears in the middle of the screen. Next, a large box
containing an image of the current sprite is drawn on the left side of the screen, with dots
for blanks and balls for filled-in pixels.

It is sometimes easiest to design sprite shapes by drawing them out on graph paper before
typing them into the sprite editor. Make a box 24 blocks wide and 21 blocks high. Then
you can fill in blocks to see how a sprite will look.

Moving Around and Drawing in the Sprite Editor

The sprite editor enables you to create sprite shapes by filling in and blanking out pixels.
The interior of the sprite editor box is 24 characters wide and 21 characters high. Each
character position represents a pixel of the sprite. Therefore, when a character position is
filled in (or blanked out) on the sprite editor box, the corresponding pixel of the sprite is
filled in (or blanked out).

MOVING

The sprite editor cursor is initially positioned in the upper left corner of the Sprite Editor
box. The cursor can be moved by the left, right, up, and down cursor keys, and with
<RETURN>. Pressing the <HOME> key will bring the cursor back to the upper left
corner.

NOTE: Sometimes the sprite editor executes commands a little slowly. If several keys are
pressed in succession (for example, if <up arrow> is pressed five times to move the
cursor up five lines), the sprite editor may not respond immediately. However, within a
second or two, the sprite editor should have performed all the commands typed in.

FILLING IN PIXELS

The asterisk key <*> or the plus key <+> will fill in both the space under the cursor and
the corresponding pixel of the current sprite. The <*> key will advance the cursor one
pixel to the right, and the <+> key will leave the cursor over the space that was just filled
in.

Commodore 64 Logo Tutorial S-11

Sprites

BLANKING OUT PIXELS

The space bar or the minus <-> key will clear both the space under the cursor and the
corresponding pixel of the current sprite. The space bar will advance the cursor one pixel
to the right, and the <-> key will leave the cursor over the space that was just blanked
out.

The key will clear the pixel immediately to the left of the cursor and will move
the cursor one pixel to the left.

The shape in the sprite editor and any sprites with that shape number can be blanked out
by holding down <SHIFT> and pressing the <CLR> key. Be very careful with this
command!

CHANGING SPRITE SIZE

When using the Sprite Editor, it is possible to see how the sprite currently being edited
will look in each of its four possible sizes. Typing X will toggle the width of the sprite
between its small (24 pixels) and big (48 pixels) width size, and typing Y will toggle the
length of the sprite between its small (21 pixels) and big (42 pixels) length size.

REVERSING THE SPRITE SHAPE

Typing <CTRL> 9 causes the sprite editor to reverse the shape: that is, all filled-in pixels
are erased and all blank pixels are filled in. To restore the shape, type <CTRL> 9 again.

EXITING THE SPRITE EDITOR

To exit the sprite editor and save your work, press the <RUN/STOP> key or <CTRL> C.
The current sprite and any other sprites with the same shape number as the current sprite
will now have the shape that was just created with the Sprite Editor.

The sprite's shape changes as you edit it, so you can not type <CTRL> G and regain the
shape as it was before you started. If you want the original version, you must read the
shape file from the disk again.

S-12 Commodore 64 Logo Tutorial

Sprites

SUMMARY OF
SPRITE EDITOR COMMANDS

Key Effect

<CRSR>{down} Moves cursor down one line

{up arrow}, <CRSR>{up} Moves cursor up one line

<CRSR>{right} Moves cursor one space to the right

{left arrow}, <CRSR>{left} Moves cursor one space to the left

<RETURN> Moves cursor to the beginning of the next line

<HOME> Moves cursor to the upper left corner

* Fills pixel, moves one space to the right

+ Fills pixel

<SPACE> Erases pixel, moves one space right

 Moves one space left and erases pixel

- Erases pixel

<CLR> Erases all pixels, homes cursor

X Toggles BIGX/SMALLX

Y Toggles BIGY/SMALLY

<CTRL> 9 Toggles shape reverse

<CTRL> C Defines shape, exits editor
 <RUN/STOP>

Commodore 64 Logo Tutorial S-13

Sprites

Saving Shapes

The current set of seven sprite shapes can be saved in a permanent file. To do this, type
SAVESHAPES (a procedure in the file SPRITES) and the name of the new shape file
being created. For example, suppose you use the shape editor to create a panda for shape
1 and a penguin for shape 5. These new animal shapes (1, 5) and the original shapes (0, 2,
3, 4, 5 and 7), could be saved by typing in

SAVESHAPES "CRITTERS

{Sgr}
The new shape file will be saved under the name CRITTERS. (Note: Any previous shape
file called CRITTERS will be deleted.) When

READSHAPES "CRITTERS

is typed in, any sprites with sprite shape 1 will be assigned the panda shape, and any
sprites with sprite shape 5 will be assigned the penguin shape.

Shape Numbers of the Built-In Shape Files

ANIMALS.SHAPES file SHAPES.SHAPES file

1 DINOSAUR 1 FRAME
2 KANGAROO 2 BBALL (Big Ball)
3 BUG 3 SBALL (Small Ball)
4 DOLPHIN 4 SQUARE
5 HORSE 5 TRIANGLE
6 CAT 6 HEART
7 BUTTERFLY 7 BOX

VEHICLES.SHAPES file ASSORTED.SHAPES file

1 TRUCK 1 TARGET
2 CAR 2 TRUCK
3 BICYCLE 3 ROCKET
4 SUBMARINE 4 BALLOON

5 AIRPLANE 5 BOW
6 BOAT 6 ARROW
7 BALLOON 7 MAN

The file RUNNER.SHAPES contains seven shapes that were designed for an animation
sequence of a woman running.

S-14 Commodore 64 Logo Tutorial

Sprites

Demonstration Programs

The Commodore 64 Logo package includes four demonstration programs. Here is a list
of each of the demonstration programs with a brief description:

SPRITEDEMOS Contains examples of the short procedures used throughout this
chapter.

DINOSAURS A dinosaur family goes out for a picnic.

SUBMARINE A submarine travels through a colorful ocean.

RUNNER An animated display of a woman running.

The remainder of this chapter describes how the procedures in DINOSAURS,
SUBMARINE, and RUNNER work.

DINOSAURS

The procedures for this demonstration program are located in the file DINOSAURS.
Type

READ "DINOSAURS

Since DINOSAURS is a self-starting file, the demonstration will run automatically.

-
{Rgr}
The secret to a self-starting file is to make a variable named STARTUP. The value
associated with the variable STARTUP must be a list. This list is run when the file is read
in. The value of STARTUP here is [DEMO], so the procedure DEMO executes
immediately.

Note that DEMO contains the instruction READ "ANIMALS. When ANIMALS.LOGO
is read in as a result, its own STARTUP value is also executed, causing Logo to read in
ANIMALS.SHAPES.

For a full explanation of self-starting files and the use of the STARTUP variables, see
section 2.1 of the Reference Guide.
-

Commodore 64 Logo Tutorial S-15

Sprites

Pressing any key will stop the execution of the program at the end of a cycle and
<CTRL> G will stop it immediately.

As DEMO runs, it reads in other files, hides unused sprites, and sets the shape and size of
the others. Then it calls STROLLDEMO.

TO DEMO
READ "SPRITES
READ "ANIMALS
EACH [0 4 5 6 71[HT]
EACH [1 2 3][SETSHAPE 1 PU]
TELL 3 BIGX BIGY
TELL 2 SMALLX BIGY
TELL 1 SMALLX SMALLY
STROLLDEMO

END

TO STROLLDEMO
IF RC? THEN SPLITSCREEN STOP ELSE STROLL
STROLLDEMO

END

STROLLDEMO runs the STROLL procedure until a key is pressed. Note the use of the
procedure EACH in both DEMO and STROLL. EACH is used to tell several sprites to do
the same thing.

TO STROLL
TELL 3 PENCOLOR 5 SETXY 60 21
TELL 2 PENCOLOR 9 SETXY 100 21
TELL 1 PENCOLOR 8 SETXY 130 0
EACH [1 2 3][SETH 0 ST]
SCENERY

REPEAT 4 [TELL 3 CLUNK 1 TELL 2 CLUNK 1 TELL 1 SKIP 3] SETX - 35
TELL 3 EAT
TELL 2 SETX - 65 EAT
TELL 1 EAT

END

STROLL begins by giving the dinosaurs different colors and lining them up, one behind
the other toward the right of the screen. Then SCENERY draws trees at the left of the
screen. The two big dinosaurs move across the screen with the CLUNK procedure; the
baby moves with the SKIP procedure. When

S-16 Commodore 64 Logo Tutorial

Sprites

the dinosaurs reach the left of the screen they nibble on the tree branches with procedure
EAT.

TO TREE :SIZE
PD FD :SIZE TOP :SIZE BK :SIZE PU

END

TO TOP :SIZE
IF :SIZE < 7 STOP
LT 25
FD :SIZE
TOP :SIZE * 0.65
BK :SIZE
RT 50 FD :SIZE
TOP :SIZE *0.65
BK :SIZE
LT 25

END

TREE and TOP (used by SCENERY) together draw trees. TREE draws the base of the
tree and then calls TOP to draw the rest. TOP is simply a variation of the binary tree
procedure you encountered in the Graphics chapter. .(See also the solutions to Graphics
Projects in the Appendix.)

{Egr}
Note that when STROLLDEMO is run, the baby dinosaur always passes in front of and
never behind its parents. Sprites obey a priority system: sprite 0 has the highest priority
and sprite 7 has the lowest priority. A sprite with a lower number will obscure one with a
higher sprite number if the two sprites overlap. To see this more clearly, type

EACH [1 2 3][HOME]

SUBMARINE

In this demonstration program, a submarine spirals through a sea of colors. Type

READ "SUBMARINE

to load the file; since it has a variable named STARTUP, it will automatically begin to
execute. Pressing any key will stop the execution of the program at the end of a cycle,
and, of course, <CTRL> G will stop it immediately.

Commodore 64 Logo Tutorial S-17

Sprites

Some procedures in the file SUBMARINE are listed below.

TO DEMO
READ "SPRITES
READ "VEHICLES
EACH [0 1 2 3 5 6 7][HT]
TELL :SUBMARINE
FULLSCREEN

SUBMARINEDEMO {as published}
END

DEMO reads the necessary files, hides the turtle and other sprites that aren't used, and
runs SUBMARINEDEMO.

TO SUBMARINEDEMO
SPIRAL
IF RC? THEN SPLITSCREEN STOP ELSE SUBMARINEDEMO

END

SUBMARINEDEMO causes the procedure SPIRAL to run until a key is pressed.

TO SPIRAL
BACKGROUND 6 PENCOLOR 7
PU HT
SETH 0 HOME
SMALLX SMALLY ST

EXPAND 2 100
REPEAT 30 [PENCOLOR RANDOM 16 FD RANDOM 100 RT RANDOM 360

RANDSIZE BACKGROUND RANDOM 16]
SETXY 120 0
SMALLX SMALLY SETH 0
STAMPCIRCLE 120
CONTRACT 100 2
HOME
REPEAT 20 [BACKGROUND RANDOM 16 PENCOLOR RANDOM 16]
PENCOLOR 7
CS REPEAT 20 [BACKGROUND RANDOM 16] BACKGROUND 6

END

S-18 Commodore 64 Logo Tutorial

Sprites

SPIRAL begins by setting up the screen and the current sprite for the journey. The sprite
begins its trip at the center of the screen. First, it travels in an outward spiral with
EXPAND, then moves across a flashing screen as it randomly changes color, size, and
direction. Next the sprite stamps a circular path on the screen with STAMPCIRCLE and
spirals back to the center of the screen with CONTRACT. Finally, the graphics screen
changes color forty times, in the middle of which the current sprite changes color.

RUNNER

The RUNNER demonstration program displays an animation of a woman running. Type

READ "RUNNER

to read the file. For very unusual results, try suppressing the STARTUP list (in this case
DEMO) by holding down the Commodore key while RUNNER is loading, and try
running the program with a different file of sprite shapes. Pressing any key will stop the
execution of the program at the end of the cycle; <CTRL> G will stop it immediately.
The procedures in RUNNER are listed below.

TO DEMO
READ "SPRITES
READSHAPES "RUNNER
ASK 0 [HT]
EACH [1 2 3 4 5 6 7][PC 1 PU]
RUNDEMO

END

TO RUNDEMO
LOCAL "STANCE
BACKGROUND 4
SHOW
TELL 1 HOME BIGX BIGY SETHEADING 90 PENCOLOR 1
WAIT 3
MAKE "STANCE 8
REPEAT 6 [MAKE "STANCE :STANCE - 1 TELL :STANCE HT]

(continued on next page)

Commodore 64 Logo Tutorial S-19

Sprites

TELL 1
SETSHAPE 2 WAIT 1 / 2
SETSHAPE 3 RUNN
SETSHAPE 2 WAIT 1 / 2
SETSHAPE 1 WAIT 1
SETSHAPE 7 WAIT 4
SHOW

END

RUNDEMO begins by setting up the screen for the runner. First, procedure SHOW
displays the shape sprites 1 through 7 at the right of the screen. Shapes 1, 2, and 3 show
the runner preparing to run. Shapes 4,'S, and 6 show her running, and shape 7 shows her
sitting down. Next the runner moves to the middle of the screen, and after a pause the
other sprites are hidden. The runner assumes her starting position and then runs across the
screen using procedure RUNN.

When a key is pressed, the runner sits down. After a pause, procedure SHOW is called,
and the seated runner then joins sprites 1 through 6 at the right side of the screen.

TO RUNN
IF RC? STOP
REPEAT 11 [RUNLOOP 4]
RUNN

END

RUNN causes the runner sprite to move across the screen (with RUNLOOP) until a key
is pressed. When a key is pressed, RUNN stops and RUNDEMO continues.

TO RUNLOOP :SHAPE

IF :SHAPE = 7 STOP
FD 30
SETSHAPE :SHAPE
RUNLOOP :SHAPE + 1

END

RUNLOOP has the runner move forward while taking on the three running shapes.

S-20 Commodore 64 Logo Tutorial

Sprites

TO WAIT :SECONDS
REPEAT :SECONDS * 300 []

END

WAIT causes a pause of an input number of seconds.

Suggestions for Ambitious Programmers

The examples given above only scratch the surface of potential sprite applications. Try
combining sprite commands with music for a fresh approach.

The most obvious use for sprites is the creation of games. If you have a joystick or a set
of paddles, these can be used to manipulate sprites more easily.

-
See the Glossary listings for JOYSTICK, JOYBUTTON, PADDLE, and
PADDLEBUTTON. You might also look at the file JOY on the Utilities Disk for more
inspiration.
-

Above all, remember that sprites can do anything the turtle does. An interesting program
might make use of the fact that sprites can STAMPCHAR, and that TB? outputs the value
TRUE if the current sprite is in contact with any filled-in background pixels. (Note that
TB? makes no distinction between lines drawn on the screen and characters stamped
there.)

{Rgr}
Finally: You may have noticed that TB? does not tell you when sprites are in contact with
each other. Not to worry! The procedure TS? in the SPRITES file serves this purpose.
You might even decide to combine the detecting functions of TS? and TB? in a procedure
like

TO TOUCH?
OP ANYOF TB? TS?

END

Commodore 64 Logo Tutorial S-21

M - MUSIC

Your Commodore 64 can play music and make sound effects. The Logo package includes
programs which allow you to use these features, although it cannot play more than one
melody line at a time. Not only can the pitch and duration be controlled, but the
"envelope" can as well. The factors creating the envelope are what makes a note sound
like a bell, a guitar, a harpsichord, etc.

The music chapter of this tutorial assumes that you are familiar with your Commodore
keyboard and some Logo primitives (commands Logo already knows). For explanations
of commands and concepts not explained in detail here, see the Graphics chapter. In
addition, the Glossary lists all Logo primitives and their uses.

Some background: a Logo procedure is a series of instructions to the computer stored for
recurrent use. A procedure can be used in other procedures just as . if it were a Logo
primitive.

Procedures are stored in files on disks. The SAVE command stores the entire contents of
the workspace to the disk as a file with the name which you give it. See the Saving
Procedures section in the Graphics chapter. Care should be taken to SAVE work
BEFORE turning the computer off. The workspace is cleared when the computer is
turned off.

Preparation: READ

The Utilities disk contains the procedures required to make music in Logo, as well as the
demonstration procedures we shall use. Start Logo as described in the Beginning Logo
chapter. Then insert your copy of the Utilities disk. Type

READ "MUSIC <RETURN> (only one quote)

(Logo does not hear what you type until you press the <RETURN> key.)

Wait for the red light on the disk drive to go off and the question mark prompt to appear
on the screen.

There are three music files on the Utilities disk. You have just read one file, MUSIC, into
the workspace. This contains procedures allowing you to make different sounds easily.

MUSIC automatically reads in another of the music files called SOUND. The SOUND
file contains the SOUND procedure which does the actual work of making the
Commodore produce a sound. The third file is a demonstration file called TWINKLE,
which will be used later.

Commodore 64 Logo Tutorial M-1

Music

To start, we will experiment with pitch and duration, concepts with which most people
are familiar.

Duration

{Egr}
Duration is usually thought of as how long a note is held. We will use a slight-
ly more general definition. Duration is the time from the beginning of one not to the
beginning of the next. To start, let's use a procedure named SSH which imitates a snare
drum sound. Type

SSH 5
SSH 10
SSH 10 SSH 10
SSH 10 SSH 5 SSH 10

If you don't hear any sounds, check to be sure the volume is turned up on the TV or
monitor and that the cables are connected properly.

Using SSH only once, it is hard to tell how long it is without a second SSH. SSH 5 and
SSH 10 sound alike when nothing follows them. When several SSH's are played one after
another, the duration of each becomes obvious. However, typing SSH over and over gets
tiresome. Another possibility is using the REPEAT command. For instance,

REPEAT 10 [SSH 10]
REPEAT 10 [SSH 5]
REPEAT 10 [SSH 5 SSH 10]

{Rgr}
There is an even better way, the SSHER procedure. SSHER takes a list of dun U-7-' tions
to play. (A list for Logo is any list of items enclosed in square brackets.) Type

SSHER [10 10 10 10 10]
SSHER [5 5 5 5 5]
SSHER [5 10 5 10 5 10]

You have probably noticed that the numbers for durations are related in a special way.
For instance, a duration of 10 is twice as long as one of 5 and similarly, 8 is twice as long
as a duration of 4. Try typing

SSHER [8 8 8 8 4 4 4 4 4 4]
SSHER [6 6 6 6 6 6 12 12 12]
SSHER [8 8 4 4 8]
SSHER [12 12 6 6 12]

M-2 Commodore 64 Logo

Music

Notice that the last two examples sound the same except that the last one goes slower.

If you know the symbols used in music notation, you will see that they relate to each
other in a manner similar to that of the numbers we have been using. If 16 were used as a
whole note, then 8 would be a half note, 4 a quarter note and 2 an eighth note. Of course,
we could have used another number instead of 16 as our whole note. If we made 12 a
whole note, then 6 would be a half note, and 3 a quarter note. Using 12 as the whole note
instead of 16 will speed up the tempo.

You don't have to change the durations to be able to change the tempo. The procedure
TEMPO allows you to do this. (The default value for TEMPO is 20.) Even though the
durations remain the same, slowing down the tempo will make the durations longer, but
each duration will still have the same relation to the other durations as it did before. Try

SSHER [8 8 4 4 8]
TEMPO 40
SSHER [8 8 4 4 8]
TEMPO 20
SSHER [8 8 4 4 8]

You can use SSHER to create any rhythm you want. For example, try

SSHER [10 5 5 10 5 5 10]

You can use the up arrow key to bring back copies of the previous line so that it will play
several times in a row. However, let's use REPEAT instead.

REPEAT 3 [SSHER [10 5 5 10 5 5 10]]
REPEAT 3 [SSHER [12 3 3 12 3 3 12]]

Note how the beats regroup if you play this pattern together several times instead of just
once as you did before.

You can vary the duration within a wide range. Numbers higher than 100 can be used but
a duration of 100 is very long. You can also use decimal numbers as well as whole
numbers for durations.

Commodore 64 Logo Tutorial M-3

Music

Pitch

Now let's try varying the pitch while keeping the durations constant. To do this we use a
different procedure named PLAY, which takes as input a list of pitches and a list of
durations. The first duration is paired with the first pitch, the second duration with the
second pitch and so on. Type

PLAY [0 1 2 3 4 5][15 15 15 15 15 15 15]

{Egr}
(Notice that there is an extra duration in the second list. Logo ignores extra durations in
input lists, but it will give an error if there are more pitches than durations.)

Each pitch is a half step higher than the one before. This is called the chromatic scale. An
octave is divided into twelve pitches, each a half step apart. The numbers below
correspond to the more common musical notation as follows.

{the following should be in a monospace font}
0 1 2 3 4 5 6 7 8 9 10 11 12
C C# D D# E F F# G G# A A# B C

You should notice that the letters that are not followed by a# sign (read sharp sign in
music notation) correspond to the white keys on the piano. The numbers 0, 2, 4, 5, 7, 9,
11, 12 that are paired with these letters make the C major scale. You can make a major
scale starting with any number using the same relations among the numbers as in the C
major scale.

{monospace}
C Major Scale 0 2 4 5 7 9 11 12
D Major Scale 2 4 6 7 9 11 13 14

An interesting project for more advanced users is to make a procedure that will generate a
major scale starting on any pitch. The major scale is one of the diatonic scales. Try typing

PLAY [0 2 4 5 7 9 11 12][15 15 15 15 15 15 15 15 15]
PLAY [2 4 6 7 9 11 12 14][15 15 15 15 15 15 15 15 15]

Try your own combinations of pitches and durations with PLAY. The pitches can only be
whole numbers, but you can use any number, even a decimal fraction, for durations.

M-4 Commodore 64 Logo Tutorial

Music

{Rgr}
There is also a procedure named SING which takes only a list of pitches and
plays each with a constant duration. If you are experimenting with just pitches, this
procedure will save you a lot of typing. The two PLAY commands above
could easily have been done instead as

SING [0 2 4 5 7 9 11 12]
SING [2 4 6 7 9 11 13 14]

Rests are another feature which you can use with PLAY or SING. Type in the letter R in
place of one of the pitches, and no sound will be played for the duration corresponding to
that pitch. Type

PLAY [0 0 R 0 R 0][10 10 10 10 10 10]
SING [0 0 R 0 R 0]
PLAY [0 0 0 0 R 7 R 4][10 5 5 10 10 10 10 10]

Procedures

Typing everything out each time, even if you do make use of the up arrow key and the
REPEAT command, can get tiresome.

For instance, to make a comparison of the chromatic and major scales easier, you might
want to create the two following procedures so you can play them again easily in any
order you want.

TO C
PLAY [0 1 2 3 4 5 6 7 8 9 10 11 12][15 15 15 15 15 15 15 15 15 15 15 15 15]

END

TO M
PLAY [0 2 4 5 7 9 11 12][15 15 15 15 15 15 15 15]

END

{Rgr}
Following is an example of a procedure that will give you quick feedback, which is
useful if you are trying to pick out a tune.

TO QUICK
PLAY (LIST RC) [15]
QUICK

END

Type QUICK to start the procedure and <CTRL>G when you want to stop it. Now any
single digit number you type will play a note.

Commodore 64 Logo Tutorial M-5

Music

It is useful to make procedures that will play phrases or pieces of a song. We will call
these tune blocks. Then you can link these tune block procedures together to make the
whole song, like putting together the blocks in a jigsaw puzzle. As an example, type

TO BELL1
PLAY [4 0 2 - 5][10 10 10 10]

END

(Notice that you can use negative numbers as well. Minus 1(-1) is a half step below 0, -2
is a whole step below 0 and so on, just as 1 and 2 are a half and a whole step above 0.)

Now type BELL1 if you haven't already. The tune is part of Westminster Chimes. So far
we only have the first part of it and the rhythm doesn't seem quite right. Try doubling the
duration of the last note to see if that sounds better. Instead of trying to add the entire
tune into the procedure BELL1, you can break it up into blocks and write a
superprocedure which uses them. This also allows you to use any of the blocks over
again. The superprocedure could look like this.

TO BELL
BELL1
BELL2
BELL3
BELL2

END

So far we have BELL1. The following procedure makes the third block in the tune.

TO BELL3
PLAY [4 2 0 -5][10 10 10 20]

END

Notice that the only change is that two of the pitches are reversed, but even a small
change makes an important difference. We leave BELL2 to you to create. (Hint: Try
rearranging these same pitches in another way, keeping the durations in the same order.)

For a similar example, read in the file TWINKLE by typing

READ "TWINKLE

M-6 Commodore 64 Logo Tutorial

Music

You have probably already guessed what tune this file will play. If you haven't, or even if
you have, type STAR. Type PO STAR to see what the superprocedure looks like. Each of
the subprocedures for STAR is a tune block.

TO STAR
STAR1
STAR2
STAR3
STAR3
STAR1
STAR2

END

The STAR superprocedure is designed in the same way as the BELL superprocedure. If
you print out STAR1, STAR2, and STAR3, you can see that the durations are the same
for all the blocks. Now see what happens if you change the rhythm

from [8 8 8 8 8 8 24]
to [12 4 12 4 12 4 24]

You can still recognize the original tune but this makes a varied version of it. It works
because each pair of 8's is changed to 12 and 4, and both 8 + 8 and 12 + 4 add up to 16.
Notice that it sounds like a waltz now instead of a march. Try reversing the 12 and the 4
so it is 4 12 4 12 4 12 24. It sounds strange, right, almost like a new tune? This is because
the durations make the pitches group together in a different way.

Try playing STAR1, 2 and 3 in various orders to see if you can make a new tune. Don't
forget the possibility of repeating the same block twice. Here is one example of a
different tune.

STAR3 STAR2 STAR1 STAR1 STAR3 STAR2

You already know what the durations are for STAR1. Now, see if you can figure out
what the pitches are without looking. The only pitches you will need are 0, 2, 4, 5, 7, 9,
pitches in the C Major Scale. To experiment, use the QUICK procedure shown earlier.

Try creating tune blocks for other tunes that you know. Instead of numbering the blocks
in the proper order, pick a random order and see if your friends can figure out how the
blocks fit together. Most familiar tunes use only the pitches of a major scale.

Commodore 64 Logo Tutorial M-7

Music

Envelopes

To change the way the music sounds, you have several options. The first thing you can
change is the wave form. There are four waveforms: triangle, sawtooth, pulse, and noise.
So far we have been using the triangle waveform. The WAVE procedure allows you to
change the form. If you type WAVE 33 the sawtooth pattern will be chosen. Try typing
BELL or STAR to hear the difference.

Waveform Number
Triangle 17
Sawtooth 33
Pulse 65
Noise 129

The noise form you have already encountered. It produces the noise in SSH and SSHER.

ATTACK/DECAY

All four waveforms are affected by changes in the attack and decay variables. The attack
is the rate at which the volume of the sound rises to its peak. The decay is the rate at
which the volume of the sound falls from its peak. Both attack and decay can range from
0 to 15. However, except for long notes, an attack above 10 doesn't work too well
because the volume rises so slowly. The decay likewise doesn't work too well below 3
because the volume of the sound will decrease too quickly. There are two procedures
used to control attack and decay and not surprisingly they are named ATTACK and
DECAY. Each takes a number as input. Try the following.

ATTACK 5 BELL1
ATTACK 10 BELL1
ATTACK 0 BELL1
DECAY 0 BELL1
DECAY 15 BELL1
DECAY 9 BELL1

Note that with a long decay (higher number), the sound lasts for the entire duration of the
note. This means that you can hear the duration of the note without the note being in
context with other notes.

M-8 Commodore 64 Logo Tutorial

Music

SUSTAIN/RELEASE

The sound will decay from its peak to a mid-range volume. The level of that volume is
called the sustain level. The rate at which the sound drops to the sustain level is the decay
and the rate at which the sound drops from the sustain level at the end is the release. As
with attack and decay, the sustain and release can vary from 0 to 15 and are controlled by
procedures named SUSTAIN and RELEASE.

PULSE

Changing the pulse has an effect on waveform 65 only, the pulse (or square) waves. The
procedure PULSE takes one input. This input can vary from 0 to 2048. If this variable is
0 or near 0, there is almost no sound. Type

WAVE 65
PULSE 0 BELL1
PULSE 100 BELL1
PULSE 500 BELL1
PULSE 1000 BELL1
PULSE 2000 BELL1

Note: Sometimes when you first use waveform 65, it makes little sound. Just type PULSE
100 or some other input where the input is not 0.

The SOUND Procedure

This section is only for those who want to know more about the low level procedure
SOUND which actually generates the sounds. It is not something which you need to
know to be able to use the music capabilities.

SOUND takes five inputs in the following order: pitch, duration, attack/decay,
sustain/release, and waveform. The PLAY procedure (which uses the NOTE procedure)
will modify the pitch you give it so that SOUND can use it. The numbers for the pitches
we have been using, when they are converted into numbers which SOUND can use, are
in the 3,000 to 20,000 range. Duration here uses the same numbers as PLAY and SSHER
do. The two values attack/decay and sustain/release both are calculated the same way.
The decay ranges from 0 to 15 and the attack is based on multiples of 16.

Commodore 64 Logo Tutorial M-9

Music

Number Attack Number Decay or Number
or Sustain Uses Release Uses SOUND Uses

0 0 0
0 1 1
0 5 5
1 0 16
1 1 17
2 0 32
2 2 34

The last variable used by SOUND (WAVEFORM) is the same as you have used in
PLAY.

To get a feel for the variety of sounds your Commodore 64 can make, try the following
procedure.

TO RANDNOISE
SOUND RANDOM 32000 RANDOM 30 RANDOM 255 RANDOM 255

ITEM(1 + RANDOM 3)[17 33 129]
RANDNOISE

END

You can modify this so it does different ranges of the variables, or you might add the
waveform 65. Another idea is to use local variables which print out so you can see the
configuration for a particular sound you like.

As with the sprites, you could add a line so the procedure stops or pauses if you hit a key.
If you type <CTRL>G to stop a procedure, sometimes the sound is left on. Just play
another note (use PLAY or SOUND) and it will stop.

This chapter serves only as an introduction to the musical capabilities of your
Commodore 64. If you would like to know more, see the chapter in the Commodore 64
Programmer's Reference Guide named "Programming Sound and Music on your
Commodore 64", or the chapter "Creating Sound" in the Commodore 64 User's Guide.

M-10 Commodore 64 Logo Tutorial

A - APPENDIX

ERROR MESSAGES

Error messages are Logo's way of trying to help the user find errors. Common errors are
misspellings and wrong usage. This list of error messages has two parts. In both parts,
capital letters indicate the unchanging part that Logo displays to you; the parentheses
indicate what will vary depending on the circumstances. Both parts of the list are
alphabetical according to the first unchanging word.

The first part of the list includes those messages which will start with different words at
different times; here you must look for that part of the message after the variable portion.

The second part includes the messages that always start out the same way.

PART I

(procedure) DIDN'T OUTPUT

Example:

FORWARD SQUARE 5
SQUARE DIDN'T OUTPUT

SQUARE FD 100
FD DIDN'T OUTPUT

This occurs when a procedure or primitive command that needs an input is followed by
another procedure or primitive that does not output anything. Logo will run the second
command assuming it will output something suitable as input to the first command. If the
second command does not output anything, then the error message results. In the
examples above, it looks like a number was left out between the two commands and
thereby caused the error.

This error generally means that you forgot to type the input Logo was looking for.

Commodore 64 Logo Tutorial A-1

Appendix: Error Messages

(primitive) DOESN'T LIKE (data) AS INPUT

Example:

PRINT 5 * "SIDE
* DOESN'T LIKE SIDE AS INPUT

This occurs when you try to do an operation with the wrong type of data. Here Logo is
trying to multiply a name (specified by ") instead of a value (specified by :).

(primitive) DOESN'T LIKE (data) AS INPUT.
IT EXPECTS TRUE OR FALSE

Example:

IF :X - 10 THEN PRINT [YOU CRASHED!]
IF DOESN'T LIKE 2 AS INPUT. IT EXPECTS TRUE OR FALSE

It looks like :X = 10 was intended...

The primitives IF, NOT, ALLOF, and ANYOF expect only expressions which will
evaluate to TRUE or FALSE, such as :X = 3 (which is either true or false). You probably
neglected to type the rest of the test. For instance, IF :X THEN... instead of IF :X=3
THEN...

(message) , IN LINE
(line)
AT LEVEL (level) OF (procedure name)

Example:

THERE IS NO PROCEDURE NAMED FD100, IN LINE
FD100
AT LEVEL 1 OF SQUARE

The (message) here is another error message, with this larger message pin-pointing the
location of the error, by printing the line, level, and procedure in which it occurred.

A-2 Commodore 64 Logo Tutorial

Appendix: Error Messages

(name) IS A LOGO PRIMITIVE

Example:

FIRST IS A LOGO PRIMITIVE

Logo reserves the words which are Logo primitives and does not allow them to be used
as procedure names. Choose another name for your procedure.

(procedure) NEEDS MORE INPUTS
(primitive) NEEDS MORE INPUTS

Examples:

SQUARE NEEDS MORE INPUTS
FD NEEDS MORE INPUTS

SQUARE required more inputs than were used; FD was used without an input. With a
procedure, this can happen when the second input is negative and is used without
parentheses. The parentheses are necessary to distinguish a second input from a first input
obtained by subtraction.

This error can also occur because parentheses are allowed as part of a word in Logo. If
there is no space between a word and a closing parenthesis, Logo will treat the closing
parenthesis as part of the word and assume that the closing parenthesis is missing.
Therefore, Logo complains, as it will with the following example.

(PRINT "HELLO "HANDSOME)

(arithmetic-operator) NEEDS SOMETHING BEFORE IT

Example:

PRINT / 8
/ NEEDS SOMETHING BEFORE IT

The number to be divided by 8 is omitted.

Commodore 64 Logo Tutorial A-3

Appendix: Error Messages

(primitive) SHOULD BE USED ONLY INSIDE A PROCEDURE

Example:

OUTPUT SHOULD BE USED ONLY INSIDE A PROCEDURE

OUTPUT, STOP, LOCAL, and GO cannot be used in immediate mode (top level). They
have meaning only in a procedure.

PART II

CAN'T DIVIDE BY ZERO

Example:

PRINT :X / :Y
CAN'T DIVIDE BY ZERO

:Y is (no doubt inadvertently) zero. This message occurs with QUOTIENT,
REMAINDER, and /. Get around this by testing :Y to see if it is zero before the division.

DISK ERROR

Example:

PRINTER
CATALOG
[] - DISK ERROR

The Logo Language Disk files cannot be listed with CATALOG. You will also get this
message when the disk is damaged.

END SHOULD BE USED ONLY IN THE EDITOR

Example:

PRINT 5 END
END SHOULD BE USED ONLY IN THE EDITOR

A-4 Commodore 64 Logo Tutorial

Appendix: Error Messages

You have done one of these things:
1, tried to use END in IMMEDIATE mode
2. put END on a line with something else in a procedure
3. put it in the list used by the Logo primitive DEFINE.

ELSE IS OUT OF PLACE

Example:

PRINT 5 ELSE PRINT :C
ELSE IS OUT OF PLACE

ELSE has no meaning in this context. It must be used in an IF ... THEN ... ELSE
statement.

FILE NOT FOUND

Example:

READ "AMINAL
AMINAL - FILE NOT FOUND

AMINAL is not a file on the disk in the disk drive. Perhaps you simply misspelled
ANIMAL. Check your spelling and type CATALOG to see what IS on the disk.

LINE GIVEN TO DEFINE TOO LONG
LINE GIVEN TO REPEAT TOO LONG
LINE GIVEN TO RUN TOO LONG

You have exceeded the maximum length of a line used by DEFINE, REPEAT, or RUN,
which is 256 characters.

MISSING INPUTS INSIDE ()'S

Example:

(FORWARD)
MISSING INPUTS INSIDE ()'S

The procedure or primitive in the () was used with too few inputs; for instance, (SETXY
3) is missing the Y coordinate.

Commodore 64 Logo Tutorial A-5

Appendix: Error Messages

NO STORAGE LEFT!

You have used up all the storage. Erase some unnecessary procedures. Before you erase
any procedures, check to see if you have a recursive call that is not at the end of a
procedure, and which does not have a way to stop. If so, fix this bug; there may not
actually be a storage problem.

NUMBER TOO LARGE OR TOO SMALL

An arithmetic operation has resulted in a number too large or too small for Logo, i.e.
greater than 10 ** (38) or less than 10 ** (-38).

PROCEDURE NESTING TOO DEEP

You have exceeded the limit for nesting procedures (which is over 200).

RESULT: (data)

Example:

12 * 10
RESULT: 120

Besides giving you a quick way to calculate, Logo is also telling you that you have not
specified what is to be done with the results of the computation. This is important to note
if you are intending to use the line in a procedure.

Sometimes you will get this message when you don't expect it. It usually means that you
have left out an OUTPUT statement in some procedure, possibly on the last line of a
recursive procedure.

THE : IS OUT OF PLACE AT (something)

Example:

PRINT X:
THE : IS OUT OF PLACE AT X

The : has no meaning in this position. Logo realizes that PRINT expects an

input, and sees the : which, in the right place, denotes a variable. You probably meant :X.

A-6 Commodore 64 Logo Tutorial

Appendix: Error Messages

THE DISK IS FULL

Example:

SAVE "NEWPROC
THE DISK IS FULL

When the disk is full and Logo will not save your workspace, you have several choices.
1. You can type CATALOG, locate a file you no longer need, and erase it with
ERASEFILE;
2. You can use another disk which is not full;
3. You can trim the amount you are saving by erasing procedures from your workspace.
This may not work; use it only as as a last resort if you can't find any blank disks.

THE DISK IS WRITE PROTECTED

You tried to write on a write-protected disk. This might mean you forgot to put your own
disk in the disk drive, and have left the Logo Language disk in place.

THEN IS OUT OF PLACE

Example:

PRINT 5 THEN PRINT 6
THEN IS OUT OF PLACE

THEN has no meaning in this context. THEN must be used in an IF ... THEN statement.

THERE IS NO DISK IN THE DISK DRIVE

Example:

READ "MYFILE

This error message is self-explanatory. You may also get this message in situations where
there is a disk in the drive but the door is open, or perhaps the disk drive may be turned
off.

Commodore 64 Logo Tutorial A-7

Appendix: Error Messages

If you get this error message when there is a disk in a turned-on drive and the door is
closed, then the disk drive has become confused. Open the door, remove the disk, and
then put the disk back into the drive and start the process over again. Consult your
Commodore disk drive manual if the problem continues.

THERE IS NO LABEL (whatever you used)

Example:

THERE IS NO LABEL QUAD:, IN LINE

You have used GO to go to a label that is not specified in the procedure. You can avoid
this by not using GO. To fix it, add the missing label to your procedure. If you are using
GO to make the result of a long IF statement appear on a separate line, then try using the
TEST/IFTRUE combination instead.

THERE IS NO NAME (whatever you used)

Example:

PRINT :X
THERE IS NO NAME X

X has not been defined, or is used only in a procedure and is local to it. This will also
occur if you forget to list the variables in the title line of a procedure.

THERE IS NO PROCEDURE NAMED (whatever you typed)

Example:

THERE IS NO PROCEDURE NAMED FD100

When Logo does not recognize a primitive, it looks for a procedure name. This
error message is usually caused by a typographical mistake, or forgetting to read in a file.

A-8 Commodore 64 Logo Tutorial

Appendix: Error Messages

THERE'S NOTHING TO SAVE

Example:

SAVE "MYSTUFF
THERE'S NOTHING TO SAVE

There are no procedures or global variables in the workspace to save. Logo would rather
tell you now than have you be disappointed when you read the (empty) file back in from
the disk.

TOO MANY PROCEDURE INPUTS

You have exceeded the limit on procedure inputs (which is over 100). This will be
exceedingly rare.

TOO MUCH INSIDE PARENTHESES

Logo uses this when it cannot figure out some parenthesized expression. Interior
parentheses may be incorrectly placed.

TURTLE OUT OF BOUNDS

Example:

FD 200
TURTLE OUT OF BOUNDS

In NOWRAP mode, the turtle would go off the screen if it moved, so it doesn't move.

YOU DON'T SAY WHAT TO DO WITH (data)

Example:

YOU DON'T SAY WHAT TO DO WITH 25, IN LINE
:SIDE * :SIDE
AT LEVEL 1 OF SQUARE

Commodore 64 Logo Tutorial A-9

Appendix: Error Messages

The line is missing OUTPUT, PRINT, FORWARD, etc. This corresponds to RESULT:
in immediate mode. Add the missing instruction (possibly PRINT in the example) to the
line. As in the RESULT: message previously described, the missing OUTPUT statement
may be in a subprocedure of the one in which the error is reported.

A-10 Commodore 64 Logo Tutorial

Appendix: Editing

EDIT MODE: USE OF CONTROL CHARACTERS AND CURSOR KEYS FOR
EASE IN EDITING

The <CTRL> key is used like the <SHIFT> key. Hold it down while you type the
character indicated. (<CTRL> N: hold down <CTRL> and type <N>.)

Moving the Cursor

These commands move the cursor without changing the text.

Arrow Keys
The Left Arrow moves the cursor to the left, and, if it is at the beginning of a line, up to
the end of the previous line.

The Right Arrow moves the cursor to the right, and, if it is at the end of a line, down to
the beginning of the next line.

The vertical arrow keys move the cursor up and down from line to line.

<CTRL> N
NEXT: Moves the cursor down to the next line. Same as down arrow key.

<CTRL> P
PREVIOUS: Moves the cursor up to the previous line. Same as up arrow key.

<CTRL> A
Moves the cursor to the beginning of the line.

<CTRL> L
End of Line: Moves the cursor to the end of the line.

<CTRL> F
FORWARD: When editing more than one screenful of text, moves the cursor one
screenful forward, or to the end of the buffer, whichever comes first.

<CTRL> B
BACK: When editing more than one screenful of text, moves the cursor one screenful
back, or to the beginning of the buffer, whichever comes first.

<RETURN>
typed at the end of a line: moves the cursor to the next line.

Commodore 64 Logo Tutorial A-11

Appendix: Editing

Moving the Text

These commands move the text without changing it or changing the position of the cursor
in the text.

<RETURN>
typed in the middle of a line: moves the cursor and the text after it on the line to the next
line.

<CTRL> O
OPEN: Opens a new line at the cursor position. The cursor remains on the open line.
Equivalent to typing <RETURN> <CTRL> P. Use it to add new lines in the middle of a
procedure.

<HOME>
Scrolls the text so that the line with the cursor is in the middle of the screen, if there is
more than one page of text. Useful for seeing a particular sequence completely on the
screen.

Deleting Text

These commands delete text. Deleted text is not recoverable. When text is deleted within
a line, the rest of the line moves to the left.

Each stroke of the key deletes the character to the left of the cursor. used
at the beginning of the line deletes the <RETURN> from the previous line, and joins the
two lines.

<CTRL> D
DELETE: Deletes the character under the cursor. When used at the end of a line
<CTRL> D deletes the <RETURN>.

<CTRL> K
KILL: Deletes from the cursor to the end of the line. If the cursor is at the beginning of
the line, <CTRL> K kills the whole line, leaving a blank line. An additional <CTRL> K
will remove the blank line.

A-12 Commodore 64 Logo Tutorial

Appendix: Editing

Leaving EDIT Mode

<CTRL> C or <RUN/STOP>
COMPLETE: Exits EDIT mode with changes intact. Use it when you complete a
procedure or changes to a procedure.

<CTRL> G
GONE: Exits EDIT mode without making any changes to your procedure. Use it when
you change your mind about making changes or have just done a lot of typing without
realizing you were still in EDIT mode.

When using Logo as a text editor, <CTRL> G is the only way to exit from the editor.

Commodore 64 Logo Tutorial A-13

Appendix: Graphics Projects

GRAPHICS CHAPTER

Turtle Driving Projects

1. through 4. Screen size:

Hint: type key <f5> to see when the whole turtle goes off the top or bottom and appears
at the other edge of the screen. Type <fl> to see the whole list of numbers (distances).
Add up the numbers (or tell Logo to: 100 + 50 + ...), type DRAW and type FD (the total
number) to check it out. You could also say FD 100 + 50 +..., but you would not know
what it totalled.

3. and 4. Diagonals:

To get to the first corner: use half the distance across (from 2) to get to the edge, and half
the distance down to get to the bottom. Write down this list of instructions in case you do
not get the true diagonal on the first try. Then aim the turtle at the opposite corner.

5. Command with a negative number and the equivalent:

Try FD -20 and BK 20

6. Square examples (Type <RETURN> only where indicated):

1) FD 100 RT 90 <RETURN>
<CTRL> P <SPACE> <CTRL> P <SPACE> <CTRL> P <RETURN>

2) FD 100 RT 90 <RETURN>
FD 100 RT 90 <RETURN>
FD 100 RT 90 <RETURN>
FD 100 RT 90 <RETURN>

3) FD 100 RT 90 <RETURN>
<CTRL> P <RETURN>
<CTRL> P <RETURN>
<CTRL> P <RETURN>

4) FD 100 RT 90 FD 100 RT 90 FD 100
RT 90 FD 100 RT 90 <RETURN>

A-14 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

{Scgr}
Square

Rectangle examples:

1) FD 100 RT 90 FD 50 RT 90 <RETURN>
<CTRL> P <RETURN>
(Why does it take only one repetition for the rectangle but three for the square?)

2) FD 100 RT 90 <RETURN>
FD 50 RT 90 <RETURN>
FD 100 RT 90 <RETURN>
FD 50 RT 90 <RETURN>

Type as one line, with only the one <RETURN>:

3) FD 100 RT 90 FD 50 RT 90 FD 100
RT 90 FD 50 RT 90 <RETURN>

{Scgr}
Rectangle

These instructions leave the turtle in its starting position, which is a very good idea. Keep
it in mind when you write procedures. It makes it easier to plan how one procedure
follows another when you want to use several, as in drawing something that requires both
a square and a triangle.

Commodore 64 Logo Tutorial A-15

Appendix: Graphics Projects

7. Some straight line initials (<RETURN> is assumed after each line):

L: LT 90 FD 50 RT 90 FD 100
I: FD 100
V: LT 15 FD 100 BK 100 RT 30 FD 100
T: FD 100 LT 90 FD 25 BK 50
Y: FD 50 LT 30 FD 50 BK 50 RT 60 FD 50

{Scgr}
Initial Y

These instructions leave the turtle at the end of the initial. Later, the tutorial will tell you
how to move the turtle without leaving a track. (See section which includes PENUP and
PENDOWN.)

Procedure Projects

1. Trackless SETUP:

TO SETUP
DRAW
PU
LT 90
FD 100
RT 90
BK 100
PD

FULLSCREEN
END

gives the same final result as

A-16 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

TO SETUP
DRAW
LT 90
FD 100
RT 90
BK 100
CS
FULLSCREEN

END

Use PU / PD to avoid having to get rid of the track.

2. Design with MOVE repeated:

TO MOVE
FD 100
RT 15
BK 80

END

TO MOVEIT
REPEAT 24 [MOVE]

END

3. A four-sided figure:

TO FOURSIDE
REPEAT 2 [FD 60 RT 30 FD 60 RT 150]

END

{Scgr}
FOURSIDE

{Scgr}
REGIS

Commodore 64 Logo Tutorial A-17

Appendix: Graphics Projects

4. Rectangles:

TO RECT
REPEAT 2 [FD 100 RT 90 FD 50 RT 90]

END

TO RECT1
REPEAT 2 [FD 110 RT 90 FD 10 RT 90]

END

5. Setup and a rectangle:

SETUP
RECT

SETUP
RECT1

6. REPEAT, a shape, and a turn:

TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

TO WINDMILL
REPEAT 4 [RECT1 RT 90]

END

{Scgr}HOTPAD

{Scgr}
WINDMILL

A-18 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Projects Using Shapes

1. A square in each corner of the screen:

TO CORNER.SQ
SETUP.SQ
SQUARE
PU
FD 225
PD
SQUARE
PU
RT 90
FD 280
LT 90
PD
SQUARE
PU
BK 225
PD
SQUARE

END

TO FOUR.SQ
SETUP.SQ
REPEAT 4 [SQUARE PU FD 255 RT 90 PD]

END

TO SETUP.SQ
PU
LT 90
FD 155
RT 90
BK 125
PD

END

TO SQUARE
REPEAT 4 [FD 30 RT 90]

END

{Scgr}
CORNER.SQ

Note how in the first version, the turtle walks around the screen getting to the location of
the closest corner, while in the second version it starts each square from the corner. It is

always more elegant and more understandable if you can figure out a pattern and repeat
it.

Commodore 64 Logo Tutorial A-19

Appendix: Graphics Projects

2. Keeping that in mind, let's see what would draw a square and place the turtle in
position to draw another in a row.

SQUARE RT 90 FD 30 LT 90 would do it,

TO ROW.SQUARE
REPEAT 3 [SQUARE RT 90 FD 30 LT 90]

END

and, if the turtle turned LT 90 first, so would

SQUARE FD 30

TO ROW.SQUARE.LEFT
LT 90
REPEAT 3 [SQUARE FD 30]

END

Lengthening the distance forward would produce a row of separated squares.

{Scgr}
ROW.SQ

3. Tower of squares:

TO SQUARE.TOWER
LT 90
ROW.SQUARE

END

TO SQUARE.TOWER. LEFT
RT 90
ROW.SQUARE.LEFT

END

A-20 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

{Scgr}
SQUARE.TOWER

4. A leaning tower:

TO LEANING.TOWER
BASE
SQUARE.TOWER

END

TO BASE
RT 90
FD 30
LT 105
FD 10

END

Discover the distances in a procedure like BASE by trying different ones.

5. A window with four panes:

TO WINDOW
REPEAT 4 [SQUARE LT 90]

END

{Scgr}
LEANING.TOWER

{Scgr}
WINDOW

Commodore 64 Logo Tutorial A-21

Appendix: Graphics Projects

6. Square
1) TO SQ2

FD 30
RT 90
FD 30

RT 90
FD 30
RT 90
FD 30
RT 90

END

2) TO SQ3
REPEAT 4 [FD 30 LT 90]

END

7. Analyzing the problem of drawing a triangle:

Decisions (as described in the text):

1. Sides will be 30 steps.
2. Have to try a few different numbers for the turn
3. Want 3 sides

TO TRI
REPEAT 3 [FD 30 RT 120]

END

8. 1 - 4 using triangles:

(1) A triangle in each corner of the screen: Substitute the triangle procedure for the
square procedure (and change the name):

TO FOUR.TRI
SETUP.SQ
REPEAT 4 [TRI PU FD 255 RT 90 PD)

END

A-22 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

TO CORNER.TRI
SETUP.SQ
TRI
PU
FD 225
PD
TRI

PU
RT 90
FD 280
LT 90
PD
TRI
PU
BK 225
PD
TRI

END

{Scgr}
FOUR.TRI

{Scgr}
CORNER.TRI

Notice that the two procedures produce different results with triangles. The orientation of
a triangle makes a difference. Notice also that the name SETUP.SQ is inappropriate and
should have been given a more general or accurate name.

(2) A row of triangles:
Turn LT 90 (or RT 30) first to lay the triangle down to make it easier to connect the
triangles.

Commodore 64 Logo Tutorial A-23

Appendix: Graphics Projects

TO ROW.TRI
LT 90
REPEAT 3 [TRI FD 30]

END

TO ROW.TRI.RIGHT
RT 30
REPEAT 4 [TRI RT 60 FD 30 LT 60]

END

{Scgr}
ROW.TRI

In the first, the turtle is heading in the direction of the first side when it starts out. In the
second, it has to turn each time to head in the right direction. Which is easier to
understand? Try to make your procedures as simple as possible.

(3) A tower of triangles:
There are several choices:
1) Turning the row of triangles will produce a tower of triangles balancing on their
points.
2) Drawing another row, fitted into the first, will produce a tower with triangles pointing
in opposite directions, either balanced on a point,
3) or with a base.
4) Drawing triangles with each base balanced on the point of the one below requires a
new procedure.

TO TRI.TOWER1
RT 90
ROW.TRI

END

A-24 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

TO TRI.TOWER2
RT 90
ROW.TRI
RT 60
FD 30
RT 120
RT 90
ROW.TRI

END

{Scgr}
TRI.TOWER1

{Scgr}
TRI.TOWER2

TO TRI.TOWER3: Add to TRI.TOWER2 (before END)
FD 15
RT 90
FD 30

FD 30 is slightly too long. Adjust it by trial, or by calculation if you know how.

TO TRI.TOWER4
LT 90
REPEAT 3 [TRI RT 60 FD 30 LT 60 BK 15]

END

{Scgr}
TRI.TOWER3

{Scgr}
TRI.TOWER4

Commodore 64 Logo Tutorial A-25

Appendix: Graphics Projects

Note that the turtle draws the triangle, turns and moves to the top, then turns again and
backs into position to draw the next one.

(4) A leaning tower of triangles:
Turn turtle and draw either ROW.TRI,
TRI-TOWER or TRI.TOWER2.

9. Designs using FOURSIDE:

NOTE: These designs were named after they were drawn.

1) TO PROPELLER
REPEAT 2 [FOURSIDE RT 180]

END

2) TO BOW.TIE
LT 105
REPEAT 2 [FOURSIDE RT 180]

END

3) TO TRI.PROP
REPEAT 3 [FOURSIDE RT 120]

END

4) TO PINWHEEL
REPEAT 4 [FOURSIDE RT 90]

END

{Scgr}
BOW.TIE

{Scgr}
PINWHEEL

A-26 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

5) TO FIVE
REPEAT 5 [FOURSIDE RT 72]

END

6) TO SUPER.PINWHEEL
REPEAT 6 [FOURSIDE RT 60]

END

7) TO BIRD
PINWHEEL
SUPER.PINWHEEL

END

{Scgr}
SUPER.PINWHEEL

{Scgr}
BIRD

8) TO FLEUR
REPEAT 9 [FOURSIDE RT 40]

END

9) TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

10) TO FLOWER
REPEAT 18 [FOURSIDE RT 20]

END

11) TO MUM
HT

REPEAT 36 [FOURSIDE RT 10]
END

Commodore 64 Logo Tutorial A-27

Appendix: Graphics Projects

{Scgr}
MUM

{Scgr}
FLOWER

{Scgr}
SUN

{Scgr}
SUN

12) TO SUN
HT
REPEAT 72 [FOURSIDE RT 5]

END

Except for BIRD, these are all essentially the same procedure, with a different turn. But
see what different designs they are! HT (HIDETURTLE) makes the drawing go faster.

Progressively more complicated designs:

Using ROW.SQ:

1) TO NINE
HT
REPEAT 4 [ROW.SQUARE LT 90]

END

2) TO LACE
HT
REPEAT 12 [NINE RT 30]

END

A-28 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

{Scgr}
NINE

{Scgr}
LACE

Using TRI.TOWER:

1) TO JAG.TRI
LT 90
REPEAT 3 [TRI.TOWER1 LT 120]

END

2) TO JAG3
REPEAT 3 [JAG.TRI LT 30]

END

{Scgr}
JAG.TRI

{Scgr}
JAG3

10. A window with 6 triangular panes:

TO TRI.WINDOW
ROW.TRI
RT 120
FD 90
REPEAT 2 [RT 120 FD 60]

END

TO TRI.WINDOW2
REPEAT 6 [TRI RT 60]

END

Commodore 64 Logo Tutorial A-29

Appendix: Graphics Projects

{Scgr}
TRI.WINDOW

{Scgr}
TRI.WINDOW2

11. Some triangle procedures:

TO TRI
FD 30
RT 120
FD 30
RT 120
FD 30
RT 120

END

TO TRI2
REPEAT 3 [FD 30 RT 120]

END

Projects: More Shapes

1. - 3. Using REPEAT and division:

1) A square

TO SQ1
REPEAT 4 [FD 30 RT 360/4]

END

2) A triangle

TO TRI3
REPEAT 3 [FD 30 RT 360/3]

END

A-30 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

3) A pentagon (5 sides)

TO PENTA

REPEAT 5 [FD 30 RT 360/5]
END

4) A hexagon (6 sides)

TO HEM
REPEAT 6 [FD 30 RT 360/6]

END

5) A septagon (7 sides)

TO SEPTA
REPEAT 7 [FD 30 RT 360/7]

END

{Scgr}
Polygons

6) A pentadecagon (15 sides)

TO FIFTEEN
REPEAT 15 [FD 30 RT 360/15]

END

Commodore 64 Logo Tutorial A-31

Appendix: Graphics Projects

Projects: Sizable Shapes

1. SQUARE4 to draw squares of various sizes:

TO SQUARE4
SQV 10
SQV 20
SQV 30
SQV 40

END

TO SQV :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

{Scgr}

SQUARE4

2. Another set of squares beside the first:

TO TWO.SQUARES
SQUARE4
LT 90
SQUARE4

END

{Scgr}
TWO.SQUARES

A-32 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

3. A procedure using a specific size square:

TO WINDOW1
REPEAT 4 [SQV 30 RT 90]

END

{Scgr}
WINDOW1

4. 4 squares, each 25 bigger than the last, with size of the first square input:

TO BIGGER.SQ :LENGTH
SQV :LENGTH
SQV :LENGTH + 25
SQV :LENGTH + 50
SQV :LENGTH + 75

END

{Scgr}
BIGGER.SQ

Commodore 64 Logo Tutorial A-33

Appendix: Graphics Projects

Projects with Regular Polygons

I. POLY 4 100 and POLY 100 4

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

{Scgr}
POLY 4 100 and POLY 100 4

2. POLY with the same :LEN and varying :TURNS

{Scgr}
POLY: Same :LEN, varying :TURNS

3. POLY with the same:TURNS and varying :LEN

{Scgr}
POLY: Same :TURNS, varying :LEN

A-34 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

4. POLY twice, with different :TURNS

{Scgr}
Using POLY Twice with Different :TURNS

5. Using POLY to make a triangle:

POLY 100 3

{Scgr}
POLY Triangles

6. The largest number you can use for :TURNS

There is no largest number ... The figure becomes a rough circle at 15, and after that,
larger numbers increase the exactness of the curve, but after a while there is no more
visible improvement and the only effect is to make the turtle go more slowly and the
circle to get larger (with the same length of side).

Monitors do not have a high enough resolution to distinguish between a many-sided
figure and a circle. The only reason you might want to be that exact (and slow) would be
for printing the designs on paper. The designs shown in the tutorial were drawn with the
turn indicated in the procedures with them. The mascots (rabbit, elephant, and snail) were
drawn with slower arc procedures for better resolution.

Commodore 64 Logo Tutorial A-35

Appendix: Graphics Projects

Projects: Curves

1. Circles: 2nd with step twice as big,
3rd with turn twice as big.

DRAW
REPEAT 360 [FD 1 RT 1]
REPEAT 360 [FD 2 RT 1]
REPEAT 180 [FD 1 RT 2]

{Scgr}
Circles

2. Circles to right and left:

DRAW
REPEAT 360 [FD 1 RT 1]
REPEAT 360 [FD 1 LT 1]

{Scgr}
Circles Left and Right

3. To figure out the diameter (distance across) of a circle, turn the turtle 90 and walk it
across. You can see the line better if you type HT (HIDETURTLE).

4. Quarter-circle arc to the right (make it into a procedure and call it ARCR90):

REPEAT 360/4 [FD 1 RT 1]

A-36 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

5. Quarter-circle arc with steps twice as big:

REPEAT 360/4 [FD 2 RT 1]

6. Sixth-of-a-circle arc to the left and right (make them into procedures and call them
ARCR60 and ARCL60):

REPEAT 360/6 [FD 1 LT 1]
REPEAT 360/6 [FD 1 RT 1]

7. A procedure which uses an arc procedure and straight lines:

TO VASE
PU
RT 90
FD 60
LT 90
BK 30
PD
HT
ARCL60
ARCR60
FD 30
LT 90
FD 20
LT 90
FD 30
ARCR60
ARCL60
ARCL90
FD 20
ARCL90

END

{Xgr}
ARCR90

{Xgr}
ARCL60

{Scgr}
VASE

Commodore 64 Logo Tutorial A-37

Appendix: Graphics Projects

8. You can combine POLY and one of the ARC procedures to get procedures ARCR and
ARCL which take variable step size and degrees. Also see the description at the end of
this Procedures section of the Appendix about developing arcs. There are arc procedures
on the Utilities disk as well, which are described in the Utilities disk section of the
Appendix.

Projects: Simple Recursion

1. A recursive procedure that draws a little figure, then calls itself:

TO FIGURE
FD 60 RT 49 FD 10 RT 80 FD 5 RT 90
FIGURE

END

{Scgr}
FIGURE

2. A recursive procedure that uses arcs and lines (The arc procedures used here are
developed at the end of this section of the Appendix):

TO FAN
PU
RT 20
PD
REPEAT 3 [RARC 50 60 LARC 50 90 BK 50 LT 90]
FAN

END

{Scgr}
FAN

{Scgr}
FAN

A-38 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

3. A recursive procedure using a triangle:

TO MILLWHEEL
TRI
ARCL60
MILLWHEEL

END

{Scgr}
MILLWHEEL

4. Stars:

TO STAR
FD 75 RT 144
STAR

END

TO STAR9
FD 75 RT 160
STAR9

END

{Scgr}
STAR

{Scgr}
STAR9

Projects: Changing Inputs

1. SQUARE with a larger increment:

TO SQUARE1 :LENGTH
FD :LENGTH RT 90
SQUARE1 :LENGTH + 15

END

Commodore 64 Logo Tutorial A-39

Appendix: Graphics Projects

TO SQUARE2 :LENGTH
FD :LENGTH RT 90

SQUARE2 :LENGTH + 25
END

{Scgr}
SQUARE1 With + 15

{Scgr}
SQUARE2 With + 25

SQUARE with a smaller increment:

TO SQUARE3 :LENGTH
FD :LENGTH RT 90
SQUARE3 :LENGTH + 1

END

TO SQUARE4 :LENGTH
FD :LENGTH RT 90
SQUARE4 :LENGTH + 3

END

SQUARE with an increment subtracted:

TO SQUARE5 :LENGTH
FD :LENGTH RT 90
SQUARE5 :LENGTH - 5

END

TO SQUARE6 :LENGTH
FD :LENGTH RT 90
SQUARE6 :LENGTH - 10

END

A-40 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

{Scgr}
SQUARE5 With-5

{Scgr}
SQUARE6 With-10

Note what happens when the length of the side becomes very small and then negative...

3. SQUARE with a slightly different turn:

TO SQUARE7 :LENGTH
FD :LENGTH RT 93
SQUARE7 :LENGTH + 5

END

TO SQUARE8 :LENGTH
FD :LENGTH RT 87
SQUARE8 :LENGTH + 5

END

{Scgr}
SQUARE7 With RT 93

{Scgr}
SQUARE8 With RT 87

Now you begin to see some of the power of changing the input in a recursive procedure.

4. SQUARE with the input changed by multiplication:

TO SQUARE9 :LENGTH
FD :LENGTH RT 93
SQUARE9 :LENGTH * 1.1

END

Commodore 64 Logo Tutorial A-41

Appendix: Graphics Projects

TO SQUARE10 :LENGTH
FD :LENGTH RT 87
SQUARE10 :LENGTH *2

END

{Scgr}SQUARE9 With * 1.1

{Scgr}
SQUARE10 With * 2

5. SQUARE, SQUARE1, ... SQUARE10 in both WRAP and NOWRAP mode.

6. Using a SQUARE procedure with variable input (such as SQV) in a procedure that
draws successively larger squares.

TO LARGER SQUARES :LENGTH
SQV :LENGTH
LARGER.SQUARES :LENGTH + 10

END

TO SQV :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

{Scgr}
LARGER.SQUARES

A-42 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

If you wanted to center your squares, instead of drawing them with two common sides,
you would move the turtle between squares:

TO LARGER.SQUARES :LENGTH
SQV :LENGTH
PU LT 90 FD 5 RT 90 BK 5 PD
LARGER.SQUARES :LENGTH + 10

END

{Scgr}
LARGER.SQUARES (Centered)

Note that the turtle turns left, moves the distance of half the increment, turns right and
backs into position, moving the distance of half the increment again. The backing up
saves an extra turn.

Projects: Testing and Stopping

1. Replacing the 45 in RT 45:

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 STOP
SQV :LENGTH
RT :TIMES * 4
DESIGN :TIMES - 1 :LENGTH

END

{Scgr}
DESIGN

Commodore 64 Logo Tutorial A-43

Appendix: Graphics Projects

2. A tower of increasingly smaller squares, number of squares chosen when procedure is
run, with a setup procedure to start lower on the screen (Type SET.TOWER, then type
TOWER. OF. SQUARES 5 55):

TO TOWER.OF.SQUARES :NUM :LEN
IF :NUM = 0 THEN STOP
SQV :LEN
FD :LEN RT 90 FD 5 LT 90
TOWER.OF.SQUARES :NUM - 1 :LEN - 10

END

TO SET.TOWER
PU BK 100 PD

END

After drawing each square, the turtle moves up the side of the square just drawn, turns,
moves half the size of the increment (so the next square is centered), and turns again,
ready to begin the next square.

3. DESIGN with a variable turn:

TO DESIGN1 :TIMES :LENGTH :TURN
IF :LENGTH < 0 THEN STOP
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH RT :TURN
DESIGN1 :LENGTH :TIMES - 1 :TURN

END

{Scgr}
TOWER.OF.SQUARES

{Scgr}
DESIGN1

A-44 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Recursion Projects

1. Successively smaller houses:

Begin by designing one house with a variable for a unit of size, to be deter- I
mined later. The parts will require some instructions between them for positioning, but
that too can wait. For a start, just describe what will be in the picture.

TO HOUSE :SIZE
FRONT :SIZE
ROOF :SIZE

END

TO FRONT :SIZE
WALLS :SIZE
DOOR :SIZE
WINDOW :SIZE

END

{Scgr}
HOUSE

{Scgr}
FRONT

Now is the time to decide the size relationship of the components. Test each of these to
be sure it works correctly before you begin on the interfacing instructions that make the
parts go together.

TO WALLS :SIZE
SQUARE :SIZE * 3

END

TO ROOF :SIZE
TRI :SIZE * 3

END

TO WINDOW :SIZE
REPEAT 4 [SQUARE :SIZE/2 RT 90]

END

TO DOOR :SIZE
RECT :SIZE * 2 :SIZE

END

Commodore 64 Logo Tutorial A-45

Appendix: Graphics Projects

{Scgr}
WALLS

{Scgr}
ROOF

{Scgr}
WINDOW

{Scgr}
DOOR

TO TRI :LENGTH
REPEAT 3 [FD :LENGTH RT 120]

END

TO SQUARE :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

TO RECT :LEN :WIDTH
REPEAT 2 [FD :LEN RT 90 FD :WIDTH RT 90]

END

Now comes the fitting together of the parts.

In each case, the turtle finishes in its starting position. This makes it much easier to figure
out how to get to where the next part is drawn.

A-46 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

One possible solution:

TO HOUSE :SIZE
FRONT :SIZE
FD :SIZE * 3
RT 30
ROOF :SIZE
LT 30
BK :SIZE * 3

END

TO SETUP
FULLSCREEN
PU
LT 90
FD 135
RT 90
BK 115
PD

END

TO FRONT :SIZE
WALLS :SIZE
RT 90
FD :SIZE/3
LT 90
DOOR :SIZE
PU
RT 90
FD :SIZE * 2
LT 90
FD :SIZE * 1.5
PD
WINDOW :SIZE
PU
BK :SIZE * 1.5
LT 90
FD :SIZE * 2 + :SIZE/3
RT 90
PD

END

SETUP moves the turtle to the lower left corner of the screen to draw the first house.

{Scgr}
Interface Bug in House

The next problem is the procedure which will use HOUSE to draw a succession of
smaller houses and stop.

Commodore 64 Logo Tutorial A-47

Appendix: Graphics Projects

TO H :SIZE
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT 90
FD :SIZE * 3.4
LT 90
FD :SIZE * 2
PD
H :SIZE * .75

END

The 3.4, 2, and .75 were determined by trial and error, to see what came out the best on
the screen.

Now all that remains is to create the procedure HOUSES which will run the other
procedures when you type HOUSES.

TO HOUSES
HT
SETUP
H 30

END

To extend this so that you can determine the size reduction when you run the procedure,
use a variable instead of the .75:

TO H :SIZE :FACTOR
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT 90
FD :SIZE * 3.4
LT 90
FD :SIZE * 2
PD
H :SIZE * :FACTOR :FACTOR

END

TO HOUSES :FACTOR

HT
SETUP
H 30 :FACTOR

END

A-48 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

{Scgr}
HOUSES .75

Now you have the option of making larger and larger houses, defying perspective, but
you will need a test for maximum size to make the procedure stop.

2. A binary tree:

The basic pattern:

TO TREE :LENGTH
RT 45
FD :LENGTH
BK :LENGTH
LT 90
FD :LENGTH
BK :LENGTH
RT 45

END

{Scgr}
TREE 20 5

Note that the turtle finishes in its starting position.

If you want to draw another one of these at each tip, then you must determine when the
turtle is at the tip and call the procedure again. Each FD :LENGTH takes the turtle to a
tip, so it is after each FD that the procedure should be called again.

Commodore 64 Logo Tutorial A-49

Appendix: Graphics Projects

One way to stop this procedure so it can recurse and draw the whole tree, is to specify the
number of forks:

TO TREE :LENGTH :FORKS
IF :FORKS = 0 STOP
RT 45
FD :LENGTH
TREE :LENGTH :FORKS - 1
BK :LENGTH
LT 90
FD :LENGTH
TREE :LENGTH :FORKS -1
BK :LENGTH
RT 45

END

{Scgr}
TREE1 80

A tree with successively smaller branches could be told to stop when :LENGTH reached
a certain size:

TO TREE1 :LENGTH
IF :LENGTH < 5 STOP
RT 45
FD :LENGTH
TREE1 :LENGTH / 2
BK :LENGTH
LT 90
FD :LENGTH
TREE1 :LENGTH /2
BK :LENGTH
RT 45

END

A-50 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

TO TREE2 :LENGTH
IF :LENGTH < 5 STOP

RT 45
FD :LENGTH
TREE2 :LENGTH * .75
BK :LENGTH
LT 90
FD :LENGTH
TREE2 :LENGTH * .75
BK :LENGTH
RT 45

END

{Scgr}
TREE2 40

Each of these makes a different design. To alter it even more, consider making it with one
side different from the other, perhaps doubling the length of the branches or changing the
turn.

3. A fish in a fish in a fish.

First draw one fish, then try it in different sizes to be sure they will fit together. Then, as
in the houses problem, write the procedure which fits them together. These procedures
utilize procedures from the ARCS file on the Utilities disk.

Commodore 64 Logo Tutorial A-51

Appendix: Graphics Projects

TO FISH :SIZE
RT 30
PU
ARCR :SIZE * 3 10
PD
ARCR :SIZE * 3 110
TAIL :SIZE
ARCR :SIZE * 3 110

END

TO FISH.IN.FISH :SIZE
IF :SIZE > 50 STOP
FISH :SIZE
PU
ARCR :SIZE * 3 10
LT 60

FD :SIZE/3
RT 90
FISH.IN.FISH :SIZE + 10

END

TO FISHES
SETUP.FISH
FISH.IN.FISH 20
EYE RT 60

END

TO SETUP.FISH
PU
LT 90
FD 100
RT 90
PD

END

TO EYE
PU
RT 90
FD 70
LT 90
FD
LT 90
FD 5

END

TO TAIL :SIZE
FD :SIZE
BK :SIZE
RT 60
BK :SIZE
FD :SIZE

END

EYE wanders about to put the turtle in an appropriate place for the eye of the smallest
fish.

{Scgr}
FISHES

A-52 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Projects Using Random

1. SQUARE3 using FD RANDOM 100 in SQUARESIDE:

TO SQUARESIDE
FD RANDOM 100
RT 90

END

TO SQUARE3
SQUARESIDE
SQUARE3

END

{Scgr}

2. REPEAT using a random turn between 0 and 360:

REPEAT 50 [FD 20 RT RANDOM 360]

3. A recursive procedure using a random turn between 60 and 150:

TO WORM
FD 20
RT 60 + RANDOM 90
WORM

END

{Scgr}
WORM

To specify a range BETWEEN two numbers, add the beginning number of the range
(here 60) to the amount of the range (90, for a range of from 60 to 150). The computer
will always choose a number within the amount of the range (here 90) and add it to the
beginning number (here 60), to obtain a number within the specified range (here 60 + 0 to
60 + 90, or 60 to 150).

Commodore 64 Logo Tutorial A-53

Appendix: Graphics Projects

4. Other ranges of turn:

TO WANDER
FD 2
RT RANDOM 10
WANDER

END

TO VARY
FD 30
RT 120 + RANDOM 30
VARY

END

TO WIGGLE
FD 5
RT -10 + RANDOM 20
WIGGLE

END

{Scgr}
WANDER

{Scgr}
WIGGLE

{Scgr}
VARY

A-54 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Mascots: Elephant, Rabbit, Snail

No lions and tigers and bears, but an elephant (that's for remembrance), a rabbit (denoting
speed and ingenuity), and a snail (go slow... slow... slow).

The arc procedures used here are on the Utilities Disk. The procedures in the upcoming
arc development section, which have slightly different names, could also have been used.

Elephant

TO ELEPHANT :SIZE

HT
ELEPHANT.EAR :SIZE
TRUNK :SIZE
TUSK :SIZE
EYE :SIZE

END

TO TUSK :SIZE
ARCL 10 * :SIZE 70
RT 160
ARCR 10 * :SIZE 50

END

TO ELEPHANT.EAR :SIZE
RT 160
FD 3 * :SIZE
ARCR 7 * :SIZE 180
ARCR 13 * :SIZE 90

END

TO TRUNK :SIZE
ARCR 17 * :SIZE 180
ARCR :SIZE 180
ARCL 10 * :SIZE 100
RT 180

END

Commodore 64 Logo Tutorial A-55

Appendix: Graphics Projects

TO EYE :SIZE
PU
RT 60
ARCL 10 * :SIZE 60
PD
CIRCLER 2 * :SIZE

END

{Scgr}
Evolving the Elephant

For the mascot elephant, :SIZE = 1.

Rabbit

TO RABBIT
HT
HEAD
ARCL 7.5 90
RT 60
BODY

END

TO EARS
EAR
RT 150
EAR

END

TO BODY
ARCR 20 60
CIRCLEL 3.5
ARCL 20 60
ARCR 1.5 180
ARCR 20 6
LT 60
ARCR 50 30
ARCL 50 30
ARCR 1.5 180
ARCR 50 30

END

TO EAR
ARCR 30 60
RT 120
ARCR 30 60

END

{Scgr}
Evolving the Rabbit

TO HEAD
EARS
ARCL 6 540

END

A-56 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Snail

TO SNAIL
HT
SNAIL.BODY
SNAIL.HEAD
RT 180
ARCR 5 (270-HEADING)
SNAIL.FOOT

END

TO POLYARC :SIZE :TIMES
IF :TIMES = 0 THEN STOP
ARCR :SIZE 60
POLYARC :SIZE + 1 :TIMES - 1

END

TO SNAIL.BODY
POLYARC 1 15
ARCL 10 60

END

TO ANTENNA
ARCR 15 60
ARCR 1 360
PU
RT 180
ARCL 15 60
RT 180
PD

END

TO SNAIL.HEAD
ARCL 5 475
ANTENNA
ARCL 5 20
ANTENNA

END

TO SNAIL.FOOT
ARCR 5 40
LT 100
ARCR 15 90

ARCL 10 60
ARCR 3 120
RT 60
ARCL 8 90

END

{Scgr}
Evolving the Snail

Commodore 64 Logo Tutorial A-57

Appendix: Graphics Projects

Procedures for Saving Pictures

The illustrations in the Graphics Procedures section were drawn (2/3 scale)
and stored on the disk with the following procedures:

TO STORE :PROCEDURE
DRAW
FRAME
H
RUN SENTENCE :PROCEDURE []
TURTLE
SAVEPICT :PROCEDURE

END

TO TURTLE
LT 90 BK 6
REPEAT 3 [FD 12 RT 120]

END

TO FRAME
PU SETXY -90 (-85) SETHEADING 0 PD
REPEAT 2 [FD 160 RT 90 FD 180 RT 90]

END

TO H
PU
HOME
PD

END

Example: type

STORE "TOWN

STORE clears the screen, draws the frame, moves the turtle to the HOME position, then
runs the procedure TOWN. The SENTENCE :PROCEDURE [] makes a list out of the
procedure name, so it can be RUN by another procedure. It turns the command into RUN
[TOWN]. The procedure TURTLE draws a little turtle, since SAVEPICT does not draw
the turtle. SAVEPICT stores the picture on the disk under the procedure name.

A-58 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

Here is a set of procedures used to generate droves of wild animals. This also illustrates a
use for SETXY.

TO DROVE :ANIMAL
FULLSCREEN
QUAD :ANIMAL (-90)

END

TO QUAD :PROC :Y
IF :Y > 90 STOP
LINE (-125) :Y :PROC
QUAD :PROC :Y + 45

END

TO LINE :X :Y :PROC
IF :X > 55 STOP
PU
SETXY :X :Y
PD
SETHEADING 0
RUN SE :PROC []
LINE :X + 60 :Y :PROC

END

To draw a lot of little pictures, type DROVE and the name of the procedure that draws
the picture. For example, type

DROVE "SNAIL

{Scgr}
DROVE of Snails

DROVE shows you the whole screen, since the drawing begins in the lower left corner,
and calls QUAD with a Y value of -90, close to the bottom of the screen. DROVE is in
charge of the whole project.

Commodore 64 Logo Tutorial A-59

Appendix: Graphics Projects

QUAD tests to be sure you are not going to be drawing off the top of the screen (Y > 90),
then calls LINE with a value for X (- 125) which will start the drawing near the left edge
of the screen. When LINE has finished, QUAD moves into position for the next line of
pictures and calls LINE again. QUAD uses LINE several times to draw rows of pictures.

LINE tests to be sure you are not drawing off the right side of the screen, then takes the
beginning value of X and the value of Y, and moves to that position. LINE then uses
RUN to call the procedure that draws the picture, and calls itself with a new position to
the right (incremented value of :X, same value of :Y). LINE draws one row of pictures.

{Scgr}
DROVE of Elephants

{Scgr}
DROVE of Rabbits

Developing an Arc Procedure

It is easiest to develop a circle procedure, then generalize it to do arcs. Then you can use
the arc procedure to do everything, including circles.

We want a circle procedure which will depend on the radius, so that we can specify the
size by giving the radius when the procedure is run. We work from the fact that the
circumference of a circle equals the radius times 2 PI. C = 2 PI (times) R, or, translating
for the computer, C = 2 * 3.14159 * R.

In Logo, every drawing is some combination of steps and turns, so the circle must also
consist of steps and turns. A circle of a certain fixed size is drawn by

REPEAT 360 [FD 1 RT 1]

The 360 comes from the turn of 1; to turn 360 degrees with a turn of 1 degree requires
360 turns, or 360/1 = 360.

The 360 might also be said to represent the circumference, the distance around. We can
substitute for it the equivalent 2 * 3.14159 * R. This makes the circumference depend on
the radius, as we wanted.

A-60 Commodore 64 Logo Tutorial

Appendix: Graphics Projects

The turn must also be changed to be a function of the radius; if we use the same step and
turn as before, we will not have changed the size of the circle. How can we figure out
what the turn should be?

With a turn of 1 degree, we figured out the number of turns by dividing 360 degrees by
that amount, to get 360 turns. If we use the same relationship, we see that the amount of
turn is 360 divided by the number of turns.

The number of turns in our new model is 2 * 3.14159 * R, so the amount of the turn will
be 360 / 2 * 3.14159 * R.

Our circle statement (type as one line) becomes

Type as one line
REPEAT 2 * 3.14159 * :RADIUS

[FD 1 RT 360/(2 * 3.14159 * :RADIUS)]

Our circle procedure becomes

TO RCIRCLE :RADIUS
Type as one line

REPEAT 2 * 3.14159 * :RADIUS
[FD 1 RT 360/(2 * 3.14159 * :RADIUS)]

END

Type the REPEAT statement as one line, with only one <RETURN>, at the end.
Substitute LT for a LCIRCLE procedure.

To change the circle procedure to an arc procedure, we must change the num
ber of turns to draw the fraction of the circle the arc represents. How do we
figure that fraction?

A 60 degree arc is 60/360, or 1/6th of a circle. The fraction of the circle which is any arc
then, would be represented by (its size) / 360. If we call its size DEGREES,
then :DEGREES / 360 would be the fraction of the circle which is the arc of the
size :DEGREES. (360/360 = the circle)

The number of turns would be the fraction of the circle represented by the arc, times the
number required by the full circle, or

(DEGREES/360)*(2 * 3.14159 * :RADIUS)

Commodore 64 Logo Tutorial A-61

Appendix: Graphics Projects

The arc procedure would be

TO RARC :RAD :DEG
Type as one line

REPEAT (:DEG/360)*(2*3.14159*:RAD)
[FD 1 RT 360/(2*3.14159*:RAD)]

END

Simplifying by doing the arithmetic gives

TO RARC :RAD :DEG
REPEAT .0174532 * :DEG * :RAD

[FD 1 RT 57.295827 / :RAD]
END

The circle procedure becomes

TO RCIRCLE :RADIUS
RARC :RADIUS 360

END

LCIRCLE would use LARC, the same as RARC with LT substituted for RT. If you
wanted to be silly, you could write

TO LARC :RADIUS :DEGREES
MAKE "RADIUS :RADIUS * (-1)
RARC :RADIUS :DEGREES

END

Now all the arc and circle procedures are based on one, and only one, procedure. Making
the radius negative has the effect of making the turn negative, or LT.

To increase the resolution of the picture, really only desirable when you are going to print
a design on paper, decrease the size of the step. Replace the original 1 with :STEP and
add the variable to the title.

To keep our procedure drawing arcs with the specified radius, we must multiply the turn
by the :STEP and consequently, divide the number of turns by :STEP, giving us (name
changed to avoid confusion with the non-variable step version):

TO RARC :RADIUS :DEG :STEP
REPEAT (.0174532*:DEG*:RADIUS)/:STEP

[FD :STEP RT (57.295827 * :STEP) /:RADIUS]
END

A-62 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

STRATEGIES FOR THE WORDS AND LISTS PROJECTS

1. Here is one version.

TO EASY :CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "U PU
IF :CHTR = "P PD

END

2. Use the same strategy, adding lines like

IF :CHTR = "S ST
IF :CHTR = "H HT

3. For a two-keystroke method, EASY would need to contain a line such as:

IF :CHTR = "C SETPENCOLOR RC

As in QUICKDRAW, RC grabs a character from the user, and SETPENCOLOR
examines that character and, if it is a number from 0 to 9, sets the color accordingly.

-

PENCOLOR can take a number from 0 to 15 as an input, but for now we'll restrict
ourselves to the range 0-9, since RC reads only one character.
-

SETPENCOLOR could be written several ways. One way that uses no new techniques is
this:

TO SETPENCOLOR :CHTR
IF :CHTR = 0 PC 0
IF :CHTR = 1 PC 1
IF :CHTR = 2 PC 2
IF :CHTR = 3 PC 3

etc.
END

Commodore 64 Logo Tutorial A-63

Appendix: Words and Lists Projects

Logo, however, makes life much simpler. If the character is not a number, it certainly is
not a 0, 1, 2, 3, etc., and so we need not make all of those tests separately. This is worded
concisely in Logo:

IF NOT NUMBER? :CHTR STOP

Then, if it is a number, we can just set the PENCOLOR to whatever CHTR happens to
be.

PC :CHTR

And that is all the procedure needs to do. Here are two ways to write that procedure.

TO SETPENCOLOR :CHTR
IF NOT NUMBER? :CHTR STOP
PC :CHTR

END

TO SETPENCOLOR :CHTR
IF NUMBER? :CHTR THEN PC :CHTR

END

As a frill, the line in EASY could be:

IF :CHTR ="C PRINT1 [WHAT COLOR?] SETPENCOLOR RC

Look up PRINT1 in the Logo glossary.

4. You can use exactly the same strategy as above. Because the test for the second
character is the same for setting the background color as for setting the pen color, it might
make sense to use one procedure for both.

The problem is that after the procedure has verified that the character is a 0 through 9, it
must know not only what character was typed, but also which to set, pen or background
color!

Here is a procedure that can do both, but it involves more advanced techniques than we
have yet explained in the tutorial. Don't worry! You can choose either to use the ones
fully explained, or jump the gun and try the new techniques.

A-64 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

TO SETCOLOR :WHICHCOLOR :CHTR
IF NOT NUMBER? :CHTR STOP
IF :WHICHCOLOR = [PEN] PC :CHTR ELSE BG :CHTR

END

The lines in EASY would need to be slightly different, stating which color, PEN or
BACKGROUND, was to be changed. Here is one set of possibilities.

IF :CHTR = "C PRINT1 [WHAT COLOR?] SETCOLOR [PEN] RC
IF :CHTR = "B PRINT1 [WHAT COLOR?] SETCOLOR [BACKGROUND] RC

5. Recognizing and using digits can be done several ways. The simplest (if not most
elegant) way to write EASY would be to add a slew of lines like this:

IF :CHTR = 2 MAKE "MULTIPLE 2
IF :CHTR = 3 MAKE "MULTIPLE 3

IF :CHTR = 4 MAKE "MULTIPLE 4
IF :CHTR = 5 MAKE "MULTIPLE 5
IF :CHTR = 6 MAKE "MULTIPLE 6
IF :CHTR = 7 MAKE "MULTIPLE 7
IF :CHTR = 8 MAKE "MULTIPLE 8
IF :CHTR = 9 MAKE "MULTIPLE 9

Of course, all these lines say essentially the same thing, namely: "If the character is a
number, make MULTIPLE that number." That can be translated straightforwardly into
Logo with this much more compact statement:

IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

Inserting this new logic into EASY requires that we use the new value, and so the lines
that move the turtle must now incorporate MULTIPLE thus:

IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "R RT 15 * :MULTIPLE
IF :CHTR = "L LT 15 * :MULTIPLE

Alternatively, the lines could be

IF :CHTR = "F REPEAT :MULTIPLE [FD 10] etc.

Commodore 64 Logo Tutorial A-65

Appendix: Words and Lists Projects

Finally, we always want to reset the multiple to 1 so that it doesn't spill over from one
command to the next.

Here is how the procedure might look.

TO QUICKDRAW
EASY RC
QUICKDRAW

END

TO EASY :CHTR
IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "R RT 15 * :MULTIPLE
IF :CHTR = "L LT 15 * :MULTIPLE
IF :CHTR = "D DRAW
IF :CHTR = "U PU
IF :CHTR = "P PD
IF :CHTR = "H HT
IF :CHTR = "S ST
IF :CHTR = "C PRINT1 [WHAT COLOR?] SETCOLOR [PEN] RC
IF :CHTR ="B PRINT1 [WHAT COLOR?] SETCOLOR [BG] RC
MAKE "MULTIPLE 1
IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

END

EASY sets MULTIPLE to 1 every time it is executed. As already mentioned, this is so
that L or F or R will mean the same as 1L or 1F or 1R each time unless some other
number is typed.

The placement of the MAKE "MULTIPLE 1 line is important. It must be placed after the
lines that use the value of MULTIPLE and before the line that sets MULTIPLE to values
other than 1. Otherwise, the special values of MULTIPLE would persist too long or be
erased too soon.

A second thing to notice is that EASY cannot use MULTIPLE before setting it the first
time. So before QUICKDRAW can be started, MULTIPLE must be given a value
(presumably the value 1). This startup procedure seems convenient:

TO QD
MAKE "MULTIPLE 1
QUICKDRAW

END

A-66 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

6. The procedure PEN picks the pen up if it is already down, and puts it down if it is
already up. We say it "toggles the pen state." To include it in EASY, only one line is
needed

IF :CHTR = "P PEN

The line IF :CHTR = "U PU can be eliminated, because P now takes care of both PD and
PU.

Since PEN uses the variable PENPOS, QD (the setup procedure written earlier) should
initially set the pen position to [DOWN].

TO QD
MAKE "MULTIPLE 1
MAKE "PENPOS [DOWN]
QUICKDRAW

END

It is also possible to set up a toggle that works without setting a global variable with
MAKE. Look up DRAWSTATE in the Logo glossary, and learn about FIRST (from the

glossary or later in this chapter) to understand this alternate version of PEN which we are
calling TOGGLEPEN.

TO EASY :CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "P TOGGLEPEN

END

TO TOGGLEPEN
IF FIRST DRAWSTATE THEN PU ELSE PD

END

The first element of the list that DRAWSTATE outputs tells whether the turtle's pen is up
or down. If it is down (if FIRST DRAWSTATE is TRUE) TOGGLEPEN puts it up;
otherwise it puts the pen down.

In this case, since no global variable is involved, no additions to QD would need to have
been made.

Commodore 64 Logo Tutorial A-67

Appendix: Words and Lists Projects

7. TO TOGGLE.SHOWN
TEST :SHOWN = [SHOWN]
IFTRUE HT MAKE "SHOWN [HIDDEN]
IFFALSE ST MAKE "SHOWN [SHOWN]

END

It is not necessary to tell the user whether the turtle is shown or not, so the PRINT
statement was not added. Since the values [SHOWN] and [HIDDEN] now serve only as
information to the procedure (they will not be printed as information to the user), it would
be more "natural" to use TRUE and FALSE to state whether the turtle was shown.

The logic would then be this: If the turtle is shown (that is, if SHOWN is TRUE) then
hide the turtle, else show it. In either case, make SHOWN whatever it was not; use the
primitive NOT to make it FALSE if it is TRUE, or TRUE if it is FALSE.

TO TOGGLE.SHOWN
IF :SHOWN HT ELSE ST
MAKE "SHOWN NOT :SHOWN

END

Finally, a strategy using DRAWSTATE and avoiding the use of global variables works
for showing and hiding the turtle as well as for the pen position.

Again, this strategy makes use of techniques we have not yet described, but which you
can look up if you want to begin learning about them now. TOGGLE.SHOWN using
DRAWSTATE would look like this:

TO TOGGLE.SHOWN
IF FIRST BUTFIRST DRAWSTATE HT ELSE ST

END

See DRAWSTATE, and learn about BUTFIRST (in the glossary or later in this chapter).

A-68 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

8. ACTION no longer needs to control the turns directly, but can handle turning the way
it handles speed. So, it might look like this:

TO ACTION :CHTR
IF :CHTR = "R MAKE "ANG :ANG + 2 ;TURN RIGHT MORE
IF :CHTR = "L MAKE "ANG :ANG - 2 ;TURN LEFT MORE
IF :CHTR = "F MAKE "DIST :DIST + 2 ; FASTER
IF :CHTR = "S MAKE "DIST :DIST - 2 ; SLOWER
IF :CHTR = "D DRAW

END

START now has to initialize one more global variable, ANG, to something sensible, and
might look like this:

TO START
MAKE "DIST 0
MAKE "ANG 0
LOOP

END

It might also be nice if the D key really reset everything. As the program currently stands,
D will clear the screen, but still leave the turtle flying around in whatever way it last flew.
It might be reasonable to change

IF :CHTR = "D DRAW

to
IF :CHTR = "D CLEAR

and then to write a procedure CLEAR which reinitializes the global variables as well as
clearing the screen.

TO CLEAR
MAKE "ANG 0
MAKE "DIST 0
DRAW

END

Commodore 64 Logo Tutorial A-69

Appendix: Words and Lists Projects

9. The feature to stop the turtle must reinitialize ANG and DIST without clearing the
screen. Here is one.

TO RESET
MAKE "ANG 0
MAKE "DIST 0

END

Then the lines in ACTION would be

IF :CHTR = "D CLEAR

to accomplish the previous task of clearing the screen, and

IF :CHTR = ". RESET

to stop the turtle without clearing the screen. (The command character to stop the turtle is
a period.)

Here are lines for reversing the rotation of the turtle, reversing the direction of the turtle
and reversing both. Insert them and play with them. The effects are very interesting.

IF :CHTR = "T MAKE "ANG (- :ANG) ; REVERSES TURN
IF :CHTR = "M MAKE "DIST (- :DIST) ; REVERSES MOVEMENT
IF :CHTR = "B MAKE "DIST (- :DIST) MAKE "ANG (- :ANG) ; REVERSES BOTH

10. TO DECODE :N
OP ITEM :N "ABCDEFGHIJKLMNOPQRSTUVWXYZ

END

There is another way that doesn't involve "counting" with ITEM (and therefore, is faster).
CHAR is a Logo primitive that takes an integer as input and outputs the character whose
ASCII code is that integer. The ASCII code for A is 65. For B, it is 66; for C, 67, and so
on. So another way to write DECODE is:

TO DECODE :N
OP CHAR (:N + 64)

END

A-70 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

11. TO ONENUM :LIST
OP DECODE FIRST :LIST

END

12. TO TWONUM :LIST
OP WORD DECODE FIRST :LIST ONENUM BF :LIST

END

13. TO THREENUM :LIST
OP WORD DECODE FIRST :LIST TWONUM BF :LIST

END

14. Here is the logic. If I have only one number in my list, I know exactly what to do. As
in ONENUM, I simply OP DECODE FIRST :LIST.

If my list is longer than that, I cannot handle it all at once, so I get ready to glue together
the decoding of the first number (which I can do immediately) and the decoding of a
slightly shorter list.

Since the exact same reasoning applies to the slightly shorter list, the same procedure can
be used. Either it can now handle the list directly (because there is only one number left
in it), or it, too, gets ready to glue on its little piece and defers the rest of the job to
another step. Here is the procedure it generates.

TO ANYNUM :LIST
IF (BF :LIST) = [] OP DECODE FIRST :LIST
OP WORD DECODE FIRST :LIST ANYNUM BF :LIST

END

15. This could all be done in a single procedure with one long and ugly line that looks
something like this:

TO RANDSENT
PR (SE ITEM 1 + RANDOM 7 PEOPLE

ITEM 1 + RANDOM 6 ACTIONS
ITEM 1 + RANDOM 7 PEOPLE)

END

Commodore 64 Logo Tutorial A-71

Appendix: Words and Lists Projects

The repetitive elements and the difficulty of seeing which words go with which make it
useful to write a helpful subprocedure. Good style makes it easy to change and extend the
program if you want to. Here is a first attempt:

TO RANDSENT
PR SENTENCE PERSON DIDWHAT

END

TO PERSON
OP PICK 7 PEOPLE

END

TO DIDWHAT
OP SE DIDIT PERSON

END

TO DIDIT
OP PICK 6 ACTIONS

END

TO PICK :LISTSIZE :LIST
OP ITEM 1 + RANDOM :LISTSIZE :LIST

END

A problem with this way of doing things is that if ACTIONS or PEOPLE are edited, and
the number of items in their lists is changed, PERSON and DIDIT must also be edited,
because they make explicit assumptions about the length of the lists they get.

This is not good programming practice, but fortunately LISTSIZE could always be
determined from LIST just by counting if we had a procedure that could ' count the
elements in a list.

The primitive COUNT, which takes a list (or a word) as an input, does exactly this: to see
what COUNT does, type

COUNT [L O G O]
COUNT [LOGO]
COUNT "LOGO

A-72 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

Because PICK can use COUNT to determine the list's size, it no longer needs to be told
the size, and so LISTSIZE can be dropped from the title line. Where that information was
needed in the body of the old version, COUNT :LIST can be substituted. The result is a
procedure that looks like this:

TO PICK :LIST
OP ITEM 1 + RANDOM (COUNT :LIST) :LIST END

Because PICK now takes only one input - the actual list - PERSON and DIDIT need to
be edited to use PICK properly.

TO PERSON
OP PICK PEOPLE

END

TO DIDIT
OP PICK ACTIONS

END

The resulting program not only solves the problem raised earlier - namely, that PEOPLE
and ACTIONS can be edited freely without requiring changes to be made in PERSON
and DIDIT - but it also looks "cleaner."

It is a general rule of good programming that by designing the "low level procedures"
(such as PICK) properly, the higher level procedures (such as PERSON) become cleaner,
better organized, and easier to understand and debug.

16. As with all procedures, there are lots of ways of designing them. Here are a few
designs for VOWEL?.

TO VOWEL? :LETTER
IF :LETTER = "A OP "TRUE

IF :LETTER = "E OP “TRUE
IF :LETTER = "I OP “TRUE
IF :LETTER = "O OP “TRUE
IF :LETTER = "U OP "TRUE
OP "FALSE

END

Commodore 64 Logo Tutorial A-73

Appendix: Words and Lists Projects

But the logic is that IF the :LETTER is any one of A, E, I, 0, or U, then OP “TRUE,
otherwise OP "FALSE. This might be more concisely expressed as

TO VOWEL? :LETTER
IF MEMBER? :LETTER [A E I O U] OP “TRUE
OP "FALSE

END

But remember, MEMBER? is a predicate itself. It already outputs TRUE or FALSE,
exactly what we want VOWEL? to output. So, VOWEL? can also be written:

TO VOWEL? :LETTER
OP MEMBER? :LETTER [A E I O U]

END

or even

TO VOWEL? :LETTER
OP MEMBER? :LETTER "AEIOU

END

A final note: The very first method is both "inelegant" and slower than the rest. It is quite
unlikely that the speed difference will matter at all unless the procedure is used very
frequently in a larger procedure.

Even a procedure, for example, that figures out where to insert a hyphen in a word at the
end of a line, will have to test only a few of the letters in the word before discovering
where the syllable boundaries are. It will probably not be noticeable which version of
VOWEL? is being used.

The criteria for good programming depend on purpose. For the most part, elegance and
readability are the best standards, and also make for compact and fast programs.

Occasionally, speed and elegance require different styles. How to choose? Go for
elegance until speed becomes a noticeable problem; then switch criteria and speed up
your programs.

A-74 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

17. It is tempting to write a YES? procedure modeled on VOWEL? like this:

TO YES?
OP MEMBER? REQUEST [[YES] [YUP] [Y] [SURE] [YEAH]]

END

but all life is not that simple. What if the person types [I SUPPOSE SO]? The procedure
would translate that as if it were a clear NO, when it is probably YES, or at least
ambiguous. Alas, we must work harder.

Here is a suggestion.

TO YES?
OP YESSUB? REQUEST

END

TO YESSUB? :RESPONSE
IF MEMBER? :RESPONSE [[YES][YUP][Y] [SURE][YEAH]] OP "TRUE
IF MEMBER? :RESPONSE [[NO][NOPE][N]] OP "FALSE
PRINT1 [PLEASE ANSWER YES OR NO:]
OP YES?

END

This is recursive in a new way. YES? is not defined in terms of itself, nor is YESSUB? -
but each is defined in terms of the other! Make sure you understand how these two
procedures work together.

There is a different and more elegant way of doing this using the LOCAL primitive.

TO YES?
LOCAL "RESPONSE
MAKE "RESPONSE REQUEST
IF MEMBER? :RESPONSE [[YES] [YUP] [Y] [SURE] [YEAH]] OP "TRUE
IF MEMBER? :RESPONSE [[NO][NOPE][N]] OP "FALSE
PRINT1 [PLEASE ANSWER YES OR NO:]
OP YES?

END

Commodore 64 Logo Tutorial A-75

Appendix: Words and Lists Projects

LOCAL allows you to use a local variable without it being an input listed in the title line.
Here, the MAKE command which comes after LOCAL will change only the local value
and not affect the global value (if any). For a more detailed discussion, see the section on
LOCAL in the Computation chapter.

18. Either of the first two work properly. To see what is wrong with the third version, try
PLURAL "OX.

19. It would be convenient to have a procedure that returned the last two letters of a
word. Of course, if there is only one letter in the word, LASTTWO must output the
whole thing.

TO LASTTWO :WORD
IF " = BL :WORD OP :WORD
OP WORD LAST BL :WORD LAST :WORD

END

Now we can write a rule for handling words that need ES endings. Let's replace

IF "X = LAST :NOUN OP WORD :NOUN "ES

with

IF NEEDS.ES? :NOUN OP WORD :NOUN "ES

Cheating! We must still write NEEDS.ES?

TO NEEDS.ES? :NOUN
IF (ANYOF "S = LAST :NOUN

"X = LAST :NOUN
"Z = LAST :NOUN) OP "TRUE

OP ANYOF "CH = LASTTWO :NOUN
"SH = LASTTWO :NOUN

END

Alas, the formatting which makes the design so clear on paper is all lost in Logo's editor!

20. IF "Y = LAST :NOUN OP WORD BUTLAST :NOUN "IES

A-76 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

21. Ah, but not if the letter before the Y is a vowel!

IF "Y = LAST :NOUN OP YPLU :NOUN

TO YPLU :NOUN
IF VOWEL? LAST BL :NOUN OP WORD :NOUN "S
OP WORD BUTLAST :NOUN "IES

END

22. The big difference between FIXVERB and PLURAL is in their handling of lists. In
the case of nouns, it was always the LAST element of the list that needed to be
pluralized, but in the case of the verbs in ACTIONS, it is always the FIRST element that
needs the modification. So the important line to change is the one that begins

IF LIST?

For FIXVERB, it might look like this:

IF LIST? :VERB OP SE FIXVERB
FIRST :VERB BF :VERB

PAST and FIXVERB appear to have absolutely identical logic, but their exceptions are
different. This brings up an interesting problem. The solution used in PLURAL was to
create global variables which contained the proper form of exceptional words. What
happens with verbs like HAVE or GO which have different exceptions for present and
past forms? Although there is always a way to solve the problem if you notice it, the use
of global variables is prone to surprising bugs until you notice the conflict.

TO PRESENT :SUBJ :VERB
IF "BE = :VERB OP EXCEPTION.BE :SUBJ
IF (ANYOF "I = :SUBJ

"YOU = :SUBJ
"WE = :SUBJ
"THEY = :SUBJ) OP :VERB

OP FIXVERB :VERB
END

Write EXCEPTION.BE yourself!

Commodore 64 Logo Tutorial A-77

Appendix: Words and Lists Projects

23. An extra level of analysis is needed in order to determine which class of verbs, which
conjugation, is involved.

Here is a simplifying structure for the top level. Why would you use the LOCAL
command? (See the section in Computation.)

TO PRESENT :SUET :VERVE
LOCAL "ROOT
LOCAL "END
MAKE "ROOT BL BL :VERBE ; SEPARATE ROOT
MAKE "END LASTTWO :VERBE ; SEPARATE CONJ. MARKER
; AND NOW, HANDLE EACH CASE SEPARATELY
IF "ER = :END OP ER.PRES :SUJET :ROOT
IF "IR = :END OP IR.PRES :SUJET :ROOT
IF "RE = :END OP RE.PRES :SUJET :ROOT

END

In the following case, make a further distinction.

TO IR.PRES :SUJET :ROOT
IF "O = LAST :ROOT OP OIR.PRESENT :ROOT
OP XIR.PRESENT :ROOT

END

The rest is yours.

24. The relevant change to make is this

IF MEMBER? REQUEST :ANSWER PR [YUP!]

25. This version of ADDQUIZ takes a number as input and keeps giving problems until
that many problems have been answered correctly.

TO ADDQUIZ :TIMES
IF :TIMES = 0 STOP
IF ADDQ RANDOM 13 RANDOM 13 ADDQUIZ :TIMES - 1

ELSE ADDQUIZ :TIMES
END

A-78 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

TO ADDQ :Nl :N2
PRINT1 (SE :N1 " + :N2 “’ = ‘)
IF (:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE
PR (SE "NOPE, :N1 " + :N2 " = :N1 + :N2)
OP "FALSE

END

Notice that the only differences in ADDQ are that it outputs TRUE if the answer is
correct and FALSE otherwise.

26. Here is one form. Are there bugs? Is there a cleaner way?

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF :TIMESWRONG = 2 STOP
IF :TIMESRIGHT = 3 ADDQUIZ :MAX + 1 0 0 STOP
IF ADDQ RANDOM :MAX RANDOM :MAX

ADDQUIZ :MAX :TIMESRIGHT + 1 :TIMESWRONG STOP
ELSE ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG STOP

ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG + 1
END

Start it by typing

ADDQUIZ 4 3 0

27. The logic we are trying to add is this: ADDQ is told what the problem is and how
many tries the person has already made.

TO ADDQ :TRIES :N1 :N2

If that number (TRIES) is 2, ADDQ should give the correct answer and output FALSE.

IF :TRIES = 2 PR (SE :N1 " + :N2 " = :N1 + :N2) OP "FALSE

Otherwise, ADDQ should state the problem as before and allow the person another try. If
the person gets the right answer, ADDQ says YAY and outputs TRUE, as it did before.

PRINT1 (SE :Nl " + :N2 “’ = ‘)
IF (:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE

Commodore 64 Logo Tutorial A-79

Appendix: Words and Lists Projects

But if the person gets the wrong answer, ADDQ should say "try again," give the same
problem as before, and know that the person has taken one more try at answering it.

PRINT [TRY AGAIN]
OP ADDQ :TRIES + 1 :N1 :N2

Of course, ADDQUIZ must start ADDQ by telling it that no tries have yet been made.

IF ADDQ 0 RANDOM :MAX RANDOM :MAX etc.

The completed program might look like this.

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF :TIMESWRONG = 2 STOP
IF :TIMESRIGHT = 3 ADDQUIZ :MAX + 1 0 0 STOP

type as one line
IF ADDQ 0 RANDOM :MAX RANDOM :MAX

ADDQUIZ :MAX :TIMESRIGHT + 1 :TIMESWRONG STOP
ELSE ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG + 1 STOP

END

TO ADDQ :TRIES :N1 :N2
IF :TRIES = 2 PR (SE :N1 " + :N2 " = :N1 + :N2) OP "FALSE
PRINT1 (SE :Nl " + :N2 “’ = ‘
IF (:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE
PRINT [TRY AGAIN]
OP ADDQ :TRIES + 1 :N1 :N2

END

28. PICK can select some element from the STATES list. Each element of the STATES
list contains both a question as its FIRST and an answer as its LAST (or BUTFIRST).
This is just what QA needs. The hitch is that if we simply type

QA FIRST PICK :STATES LAST PICK :STATES

Logo will run PICK twice, and each time PICK is run it may pick a different element
from the list! QA needs to take the FIRST and LAST (or BUTFIRST) of the same
element.

A-80 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

The first thing to resolve is whether we use the LAST or BUTFIRST of the element. It
makes a big difference, since the LAST is a word and the BUTFIRST is a list.

Since QA compares its :ANSWER with a REQUEST (which is always a list), we might
as well use BF. One way STATESQUIZ might work is this:

TO STATESQUIZ
REPEAT 5 [MAKE "QLIST PICK :STATES QA FIRST :QLIST BF :QLIST]

END

An alternative that is neater in a few ways is this:

TO STATESQUIZ
REPEAT 5 [STATEQA PICK :STATES]

END

TO STATEQA :QLIST
QA FIRST :QLIST BF :QLIST

END

29. The BF of [IOWA [DES MOINES]] is [[DES MOINES]] but we want [DES
MOINES] to compare to the sentence typed to REQUEST. In this case, we would have
been better off taking the LAST rather than the BUTFIRST. How do we resolve the
problem?

The real problem is that the data-base :STATES has both words and lists as possible
answers. This makes it difficult to check for equality.

If the answer-part of each element of the :STATES list was always a list, we could
consistently choose the FIRST for the question, and the LAST for the answer.

So, we make states differently:

MAKE "STATES [[OHIO [COLUMBUS]] [[NEW YORK] [ALBANY]]
[GEORGIA [ATLANTA]] [IOWA [DES MOINES]]]

And we redefine STATEQA

TO STATEQA :QLIST
QA FIRST :QLIST LAST :QLIST

END

Commodore 64 Logo Tutorial A-81

Appendix: Words and Lists Projects

30. 'Tis all yours!

31. The changes would be in the form:

IF :CHAR = "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE
IF :CHAR = "R RUN.AND.RECORD SE "RT 15 * :MULTIPLE
IF :CHAR = "L RUN.AND.RECORD SE "LT 15 * :MULTIPLE

There are two subtleties. One is that the command lines read:

IF :CHAR = "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE

and not (more simply)

IF :CHAR = "F RUN.AND.RECORD [FD 10 * :MULTIPLE]

The reason is that although the second version will RUN correctly, the command imand
that will be LPUT on the history list will be, literally, [FD 10 * :MULTIPLE] rather than
the desired [FD 30] or whatever it is.

RUN and REPEAT are the only primitives that are capable of evaluating what is inside a
list. Everything else just treats it as text without meaning.

Also, remember that TOGGLEPEN must be edited to record its ups and downs.

32. Lines like IF :CHAR = "< RCIRCLE :SIZE would be needed, but you must provide
the mechanism for setting :SIZE just as you had for the forward and turning commands.

If you allow ARC (first introduced in the section on OUTPUT) to take an angle input as
well as the two it now takes, SEGMENTS and CHORD, the new procedures RCIRCLE
and LCIRCLE can then be defined by using ARC with angles of 18 and -18 respectively.

33. The procedure itself is very straightforward. It depends on lists of the verbs, nouns,
proper names, and so forth.

So far, procedures to output verbs and proper names have been created, as has a global
variable containing adverbs. The following definition of MADLIB further assumes
procedures NOUNS, and ADJECTIVES that must be created on the model of ACTIONS
and PEOPLE.

A-82 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

TO MADLIB :TEXT
OP MAD "V ACTIONS MAD "N NOUNS MAD "PN PEOPLE MAD "ADV

:ADVERBS MAD "ADJ ADJECTIVES :TEXT
END

34. With the example that was given, all that is needed is to check both the words
themselves (i.e., PN LOVES PN<comma> BUT PN CAN'T STAND PN<period>) and
the butlast of the words (i.e., P LOVE PN BU P CAN' STAN PN). All of the PNs will be
caught this way. The test

IF BL FIRST :CONTEXT = :KEY

will do that job. If the BUTLAST of the word is :KEY, then the LAST will be the
punctuation mark. By picking an alternate and adding the punctuation mark to the end of
it,

WORD PICK :ALT LAST FIRST :CONTEXT

the original punctuation has been restored. Finally, this word must be integrated into the
developing sentence just as if the punctuation problem had not occurred.

OP SE WORD PICK :ALT LAST FIRST :CONTEXT
MAD :KEY :ALT BF :CONTEXT

In its entirety the new line of the procedure is:

IF BL FIRST :CONTEXT = :KEY
OP SE WORD PICK :ALT LAST FIRST :CONTEXT

MAD :KEY :ALT BF :CONTEXT

There is a problem. What if one of the keywords were N, as in problem 33, and one of the
words of the sentence were "NO"? The BUTLAST of the word NO would falsely match
the keyword, and NO would be replaced by a noun with an 0 stuck at the end!

A more complex and sophisticated procedure could be written, but the best solution is to
make keywords clearly distinct from text. If keywords all began with some non-text
character, so that they could never be generated from a text word (as happened when N
was generated from NO), the problem would be solved.

Commodore 64 Logo Tutorial A-83

Appendix: Words and Lists Projects

Recommendation: Begin keywords with <period>.

Thus, madlib sentences would look like this:

[.PN LOVES .PN, BUT .PN CAN'T STAND .PN.]

Note that MAD never tests for the special keyword marker. The marker just serves to
prevent mishaps.

Does the order in which the tests are performed matter?

TO MAD :KEY ALT :CONTEXT
IF :CONTEXT = [] OP []
IF (FIRST :CONTEXT) = :KEY OP SE PICK :ALT

MAD :KEY :ALT BF :CONTEXT
IF BL FIRST :CONTEXT = :KEY OP SE WORD PICK :ALT LAST FIRST

:CONTEXT
MAD :KEY :ALT BF :CONTEXT

OP SE FIRST :CONTEXT
MAD :KEY :ALT BF :CONTEXT

END

35. Let's title the procedure this way.

TO MADLIB :TEXT :KEYS

The logic is that if there are no keywords at all to find and replace, then the text must be
returned as it is.

IF EMPTY? :KEYS OP :TEXT

If there are keys to replace, then

1) using the first of them, replace each instance of it in the text with a suitable alternative
(this is accomplished by MAD) and

2) use that as the text in which to search for the remaining keys (this is the purpose of
MADLIB, itself, and is thus the recursive step).

A-84 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

Worded more like the program, we are to output the MADLIB of the-text-resulting-from-
MADding-the-text-with-the-first-key and a list of the remaining keys.

Skipping over a detail, the Logo might look something like this:

OP MADLIB (MAD FIRST :KEYS somethingorother :TEXT) BF :KEYS

The "somethingorother" needs some thinking.

In previous situations, the key words bore no relation to the procedures or variables that
contained the corresponding lists. This is inconvenient, since there is no way to know
from looking at the key word, just where to find its substitutes.

But that can be corrected. Abandon the old design of having V refer to a procedure
ACTIONS, and ADV to a variable ADVERBS.

From now on, we must be consistent about using either procedures or variables. Further,
the keyword will be the name of the variable or the title of the procedure.

Choosing to go with global variables, we can then say that if MAD's KEY is the first of
MADLIB's KEYS, MAD's ALT will be the THING of the first of MADLIB's KEYS.
MADLIB would then look like this:

TO MADLIB :TEXT :KEYS
IF EMPTY? :KEYS OP :TEXT
OP MADLIB (MAD FIRST :KEYS THING FIRST :KEYS :TEXT) BF :KEYS

END

If we chose to use procedures titled by KEY, then MAD's ALT would be the result of
RUNning the first of MADLIB's KEYS.

TO MADLIB :TEXT :KEYS
IF EMPTY? :KEYS OP :TEXT
OP MADLIB (MAD FIRST :KEYS RUN (SE FIRST :KEYS) :TEXT) BF

:KEYS
END

The most important element here became the willingness to abandon some old designs
and rethink the relationship between parts of the problem.

Commodore 64 Logo Tutorial A-85

Appendix: Words and Lists Projects

36. GREET needs to look at what OUTPUT.NAME gives it and determine, first of all, if
the result is a name or a response. Here is a possible method:

TO RESPOND :NAME.OR.PHRASE
IF WORD? :NAME.OR.PHRASE GREET :NAME.OR.PHRASE STOP
PRINT :NAME.OR.PHRASE

END

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
RESPOND OUTPUT.NAME REQUEST

END

37. Just before the neutral answer (OP [I WAS JUST CURIOUS]) the procedure must
look for negatives, and should respond appropriately if it finds any.

IF FIND? [WON'T NONE DON'T NOT NO] :SENT OP [SORRY I ASKED]

FIND? is simply a fancy MEMBER?

TO FIND? :ITEMS :LIST
IF EMPTY? :ITEMS OP "FALSE
IF MEMBER? FIRST :ITEMS :LIST OP "TRUE
OP FIND? BF :ITEMS :LIST

END

38. Any of a number of strategies will work. Be of good cheer! The task of deciding
which approach to take should be simple for anyone who has gotten this far.

39. If punctuation only comes at the ends of words, removing it is quite simple.

TO NOPUNC :WORD
IF MEMBER? LAST :WORD [“ , . ! ?] OP BL :WORD
OP :WORD

END

A-86 Commodore 64 Logo Tutorial

Appendix: Words and Lists Projects

A more general solution, more powerful but slower, is:

TO NOPUNC :WORD
IF EMPTY? :WORD OP "
IF MEMBER? FIRST :WORD [" , . ! ?] OP NOPUNC BF :WORD
OP :WORD FIRST :WORD NOPUNC BF :WORD

END

In either case, change FIRST :S to NOPUNC FIRST :S throughout the CHECK
procedure.

40. Sorry. From here on in, you are on your own!

Commodore 64 Logo Tutorial A-87

Appendix: Utilities Disk

THE COMMODORE LOGO UTILITIES DISK

{Sgr}
Before you begin, make a copy of your Utilities Disk because it is possible to damage it
or erase it accidentally. Put the original away in a safe place.

To copy the Utilities Disk, use the COPY/ALL program if you have two disk drives, or
the 1541 BACKUP program if you have one disk drive. These programs are on the disk
which comes with the VIC 1541 disk drive. If you don't have this disk, ask your local
dealer for a copy. If you have access to a Commodore 4040 dual-disk system, you may
wish to use it to make a backup copy of the Utilities Disk.

Following are instructions for making a backup with one disk drive. This program is used
when you have turned on the Commodore 64 and are in BASIC, not after you have
loaded Logo.

1. Insert the VIC 1541 disk in the disk drive and type LOAD "1541 BACKUP",8
<RETURN>.

2. After the Commodore 64 responds with SEARCHING, LOADING, READY, type
RUN and hit <RETURN>.

3. Type the letter B and hit <RETURN>.

4. The program will show the cursor after the words DISK DESTINATION. Type a disk
name such as MYDISK and hit <RETURN>.

5. Type a 2 character ID that is different from the disk you are copying and hit
<RETURN>.

6. The program will tell you to insert the destination disk in the drive. When you do this
and hit <RETURN>, it will be formatted, erasing anything that was on it. Be careful!

7. The program will tell you to insert the source disk (the disk to be copied). When you
hit <RETURN>, it will ask you to verify that the disk to be copied is in the drive. When
you hit <RETURN> again, the contents of the disk will be loaded into the Commodore
64's memory.

8. It will tell you to insert the destination disk and hit <RETURN>. The contents of the
Commodore 64's memory will be put on this new disk. These last two steps may need to
be repeated several times if there is a lot on the disk. The program will tell you when to
switch disks.

A-88 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

To Use the Utilities Disk Files

1. Start Logo using the Commodore Logo Language Disk, then remove the Language
Disk from the disk drive and put it away.

2. Insert your backup copy of the Utilities Disk into the disk drive.

3. To list the files on the disk, type CATALOG. If the listing is more than one page, the
beginning will scroll by and disappear. To stop the scrolling, use <CTRL> W as a toggle
to start and stop scrolling.

4. To read a file from the disk, after the ? prompt type READ "(file name without LOGO
extension) Example:

? READ "TEACH (only one quote, please)

Logo will read the file, confirming the presence of each procedure as it reads it in by
printing its name and the word DEFINED. Example:

? READ "TEACH
TEACH DEFINED
TEACH.BODY DEFINED
ASK DEFINED
?

5. To use the file, type the name of a procedure, as described below. Some programs are
self-starting; that is, they begin executing by themselves once you read the file. Most
programs are not, and require you to type the name of the initial procedure. The initial
procedure for most of the demonstration programs on the Utilities disk is the same as the
name of the file.

For utility programs which are intended to be initialized and used later, the procedure is
usually called SETUP. If Logo prints the ? prompt when it finishes reading the file, you
must start the program yourself. The descriptions of the programs below explain how to
start each one.

Commodore 64 Logo Tutorial A-89

Appendix: Utilities Disk

Summary of Utilities Disk Files

The procedures in the Utilities Disk files provide excellent models for analysis. Much can
be learned from their structures and techniques. Note in particular the brevity of Logo
procedures, the constant use of subprocedures, and the use of procedure names which
describe the procedure explicitly.

In addition to serving as models, the procedures in the files on the Utilities Disk perform
a variety of functions.

Utilities:

ARCS
Collection of procedures for drawing arcs with variable radii. Another procedure for
drawing an arc is developed in the Graphics Projects section of the Appendix.

B&W
Will reset the screen colors for a black and white TV screen.

BASE
Procedures for converting from one base to another, such as from decimal to binary.

CCHANGE
CCHANGE.BIN
CCHANGE.SRC
These three files are an example of the assembly language interface. The files allow you
to change lines from one color to another after they have been drawn.

COLORS
Preset variable names for the colors.

FOR
A For-Next loop.

INSTANT
System of single letter Logo commands which makes Logo graphics available to non-
readers, among others. INSTANT and its use are described at the end of the Graphics
chapter. It also serves as an example of Logo programming style and of the use of RUN
and DEFINE.

JOY
Procedures that allow you to draw on the screen with a joystick.

LOG
Procedures which print the log 10, natural log, and powers of e (2.718...) to three or four
significant digits.

A-90 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

PLOTTER
Procedures for controlling the Commodore 4-color plotter.

PRINTPICT
A program written in BASIC for printing saved pictures on the printer. You must exit
Logo in order to use this file.

STAMPER
Procedures for printing text on the graphics screen.

STAMPFD
Allows you to stamp the same character multiple times over a specified distance on the
graphics screen.

TEACH
System of writing Logo procedures without using the editor.

TEXTEDIT
Procedures for using the Logo system as a text editor.

WHILE

Two procedures called WHILE and UNTIL which give you those programming
functions.

Demonstration Programs:

ADVENTURE
An adventure game which demonstrates some advanced list processing.

ANIMAL
Game which adds your information about animals to its knowledge base. The structure
and procedures of this program are good examples of advanced use of lists.

ANIMAL.INSPECTOR
Procedures for examining the ANIMAL knowledge base.

DYNATRACK
Game using principles of physics to simulate a ride around a frictionless race track.

GRAMMAR
Procedures which generate random sentences. There is also a set of procedures to
compose postcards for you. Both use the same general approach and share some sub-
procedures.

Commodore 64 Logo Tutorial A-91

Appendix: Utilities Disk

INSPI.PIC1
INSPI.PIC2
Picture on utilities disk to show use of READPICT and SAVEPICT.

PIG
Takes a sentence and converts it into pig Latin. A good example of word and list
manipulation. Try modifying the file so it handles the letter Y properly.

SNOW
Draws a picture of a snowflake by modifying a triangle.

TET
Example of a simple recursive procedure which draws a complex design.

Logo/Assembler Interfacing:

ADDRESSES
File of names describing addresses in the Logo interpreter for the Assembler.

AMODES
File of names describing the 6502 addressing modes.

ASSEMBLER
Logo assembler procedures.

OPCODES
File of names describing the 6502 mnemonics for the assembler. The Assembler section
in the Reference Guide describes Logo/Assembler interfacing.

Sprite Files:

SPRITES
Contains procedures for reading in sprite shape files, changing the size of sprites, telling
several sprites what to do, and telling if the current sprite is in contact with an object on
the screen.

SPRED
Contains a sprite editor allowing you to make your own sprite shapes.

ANIMALS
The file contains variables corresponding to the various sprite shapes in
ANIMAL.SHAPES. Also automatically reads in the shapes in ANIMAL.SHAPES.

ANIMALS.SHAPES
Contains animal sprite shapes.

A-92 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

ASSORTED
ASSORTED.SHAPES
These files contain names and shapes for miscellaneous sprite shapes. ASSORTED
automatically reads in the shapes from ASSORTED.SHAPES.

RUNNER
A sprite demonstration showing a woman running. Uses the shapes in
RUNNER.SHAPES.

RUNNER.SHAPES
Sprite shapes of a woman running.

SHAPES
SHAPES.SHAPES
These files contain the names and shapes of a variety of geometric shapes. SHAPES will
automatically read in the shapes from SHAPES.SHAPES.

VEHICLES
VEHICLES.SHAPES
These files contain the names and shapes of different vehicles. VEHICLES will
automatically read in the shapes from VEHICLES.SHAPES.

DINOSAURS
A demonstration program showing a family of dinosaurs walking across the screen.

SUBMARINE
A demo program showing a submarine moving around the screen and drawing.

SPRITEDEMOS
Contains procedures described in the chapter on Sprites.

VELOCITY
Allows you to give sprites velocities.

See the chapter on Sprites for more details about these files.

Music Files:

MUSIC
Procedures that play lists of notes and allow you to change the parameters of the sound
such as attack, decay, sustain, and release.

SOUND
Procedure used to create the sound. This file is read in automatically by the MUSIC file.

TWINKLE
Contains procedures to play "Twinkle, Twinkle, Little Star" as an example of how to
program music on the Commodore 64.

See the chapter on Music for more details.

Commodore 64 Logo Tutorial A-93

Appendix: Utilities Disk

Explanation of Utilities Disk Files

ARCS:
Variable Radius Arc and Circle Procedures

Additional variable radius arc procedures are developed in the Graphics Projects section
of the Appendix.

To use the arc and circle procedures provided on the Utilities Disk, type the name with
numbers for the inputs required. Examples:

ARCR 50 90
for a 90 degree (quarter circle) arc to the right with a radius of 50.

ARCR1 1 90
for a 90 degree (quarter circle) arc to the right with a radius of 360/(2 PI) or about 57.2.

CIRCLER 30
for a circle to the right with a radius of 30. Substitute ARCL, ARCL1, and CIRCLEL for
arcs and circles to the left.

ARC Procedures

ARCR :RADIUS :DEGREES
Procedure which draws an arc to the right with given :RADIUS and length :DEGREES.
Uses ARCR1.

ARCL :RADIUS :DEGREES
Procedure which draws an arc to the left with given :RADIUS and length :DEGREES.
Uses ARCL1.

CIRCLER :RADIUS
Procedure which draws a circle to the right with given :RADIUS. Uses ARCR.

CIRCLEL :RADIUS
Procedure which draws a circle to the left with given :RADIUS. Uses ARCL.

ARCR1 :SIZE :DEGREES
Procedure which draws an arc to the right with a radius equal to :SIZE x 360/(2 PI). Uses
CORRECTARCR.

A-94 • Commodore 64 Logo Tutorial

Appendix: Utilities Disk

ARCL1 :SIZE :DEGREES
Procedure which draws an arc to the left with a radius equal to :SIZE x 360/(2 PI). Uses
CORRECTARCL.

CORRECTARCR :SIZE :AMOUNT
Procedure which makes a small correction with each step of ARCR1.

CORRECTARCL :SIZE :AMOUNT
Procedure which makes a small correction with each step of ARCL1.

The CORRECTARC procedures compensate for the error introduced by trying to make a
fractional number of repetitions in the ARCl procedures, in the line REPEAT
QUOTIENT :DEGREES 5 [FD :SIZE * 5 RT 51

B&W:
Resets the Color for a Black & White TV

The B&W file contains one procedure, also named B&W. When this file is read in, it
runs automatically and the default colors are changed to black and white, which can be
read more easily on a black and white TV screen. Be careful! This procedure also does a
GOODBYE, so anything already in the workspace will be lost.

BASE:
For Converting from One Base to Another

The following procedures convert numbers from one base to another. Some of the
procedures are for converting between frequently used bases.

BASE :BASE :NUM
Converts the base 10 number :NUM into base :BASE. For example

BASE 2 3
RESULT: 11

UNBASE :BASE :BNUM
Outputs the base 10 number that is equivalent to the number :BNUM in base :BASE. If
the base is greater than 10, BNUM might have letters in it as well as numbers. In those
cases where BNUM contains a letter, a double quote mark must precede the number. This
method of dealing with numbers containing letters is used in the $ procedure below as
well.

Commodore 64 Logo Tutorial A-95

Appendix: Utilities Disk

BINARY :NUM
Converts the base 10 number :NUM into a binary number.

HEX :NUM
Outputs the hexadecimal number that corresponds to the base 10 number :NUM.

$:NUM
Outputs the base 10 number corresponding to the hexadecimal number :NUM. If letters
are used as part of the hex number, the value for :NUM must be preceded by a double
quote mark.

$2000
RESULT: 8192

$ "F
RESULT: 15

E :ADDR
This is simply an abbreviation for .EXAMINE, so that typing only E and a number is
necessary.

CCHANGE, CCHANGE.BIN, CCHANGE.SRC: Changing Colors on the Graphics
Screen

These three files are an example of the assembly language interface. For more details, see
the Reference Guide section on the assembler.

To use these files, type READ "CCHANGE. This file will load and then call the other
two files. CCHANGE contains a procedure of the same name which takes two inputs.
The first is the number of a color, and the second is the number of the color to which the
first will be changed. For instance, CCHANGE 2 7, will change all red lines (2) to yellow
lines (7).

COLORS:
Variable Names for Colors

This file contains the names and values for the 16 colors, which can be seen when you
type PO NAMES. The variable RED has the value 2, so the pen color could be set to red
by typing PENCOLOR :RED.

A-96 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

FOR:
A FOR-NEXT Loop

The procedure FOR in the file FOR takes four inputs. The first is the name of the
iteration variable, for example "I. The next two inputs are numbers giving the start and
end of the iterative loop. The last input is the action to be done during the loop.

INSTANT:
Single Letter Logo Commands

See INSTANT section of the Graphics chapter in this tutorial. The INSTANT program is
an example of how easy it is to create "languages" with simple Logo programs. It also
serves as an example of Logo programming style, and of the use of RUN and DEFINE.
You can easily modify INSTANT to provide more complex commands.

JOY:
For Drawing with the joystick

To start the file, type PLAY after the file is read in.

PLAY
clears the screen and calls JOYPLAY.

JOYPLAY
Uses MOVE to check the setting of the joystick and move the turtle accordingly. Checks
to see if the joybutton is on or off and raises or lowers the pen in response.

MOVE
Takes the output from the JOYSTICK command, turns it into a direction in degrees and
moves the turtle in that direction.

LOG:
Procedures for Logarithms and Exponents

There are three main procedures, LOG, LOG10, and EXP, as well as several
subprocedures. These procedures for calculating logs and exponents are accurate to 3 or 4
significant digits.

Commodore 64 Logo Tutorial A-97

Appendix: Utilities Disk

LOG10 :N
Outputs the base 10 logarithm of :N.

LOG :N
Outputs the natural log of :N.

EXP :N
Outputs e (2.718...) raised to the power of :N.

PLOTTER:
Controlling the Commodore 4-color Plotter

This file allows you to access a 4-color plotter through Logo. The names of the
procedures resemble their Logo screen graphics equivalents, e.g. PFD for Plotter FD,
PPU for Plotter PU, and so on. Type HELP for a listing of commands.

Some of the plotter commands have no exact Logo equivalents. When you type HELP,
you are told to type SETUP. This command puts the plotter in graphics mode and centers
the pen on the page. See the procedure POLYSPI for an example of how to create plotter
graphics.

There is also a text mode on the plotter; type TXTMODE to leave graphics. (The
command to return to graphics mode is GRMODE. Observe that GRMODE, unlike
SETUP, does not center the pen.) To print words or lists, use DPRINT just as you would
use PRINT. The command DPO differs from PO slightly: if a single procedure is to be
printed out, its name must be preceded by a double quote.

Text may also be printed from graphics mode. Consult your plotter manual for the
appropriate commands, and look at SETORIGIN to get an idea of how to write plotter
commands into a Logo procedure.

PRINTPICT:
Hardcopy Printing of Saved Pictures

To use PRINTPICT you must have already saved your picture onto disk (see SAVEPICT
in the Glossary). Turn the Commodore 64 on and place the Utilities Disk in the drive.
Type

LOAD "PRINTPICT",8
RUN

A-98 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

You will be asked for the name of the picture you want to print. Remove the Utilities
Disk from the drive and insert the disk with the picture files on it. In the case of a picture
stored with SAVEPICT "SPIRAL, you would now type

SPIRAL

PRINTPICT will then print the picture described in file SPIRAL.PIC1. Note that
SPIRAL.PIC2, which contains color information, is not used here.

STAMPER:
Printing Text on the Graphics Screen

This file uses the command STAMPCHAR to put letters on the graphics screen.
However, instead of only using one letter at a time, these procedures permit whole words
and sentences to be typed.

STAMP :THING
Orients the turtle so that it will move from left to right. Uses STAMP1 to print a word or
list. (Remember that a word must be preceded by a quote mark and a list must be
enclosed in square brackets.) Resets the turtle's heading to what it was before STAMP ran
when the word or list is finished printing. In addition, STAMP checks to see if the pen is
up or down, and if necessary picks up the pen so it won't draw a line over the letters. It
then resets the pen at the end of the procedure. If you want to print in some other
direction than left to right, this program has to be modified. Change the line SETH 90
PU, or simply use STAMP1.

STAMP1 :THING
Prints a word or list on the screen. It moves FD 8 after stamping each letter. This works
nicely if the turtle is moving horizontally, but if the turtle is moving diagonally or
vertically, the distance has to be larger to prevent overwriting. The exact distance varies
with the heading.

STAMPFD:
Printing Strings of Characters on the Graphics Screen

STAMPFD :D :CHAR
This procedure needs two inputs. The first is the distance which you want the turtle to
move. The second is the character which you want stamped. (Remember, a letter must be
preceded by a double-quote.) STAMPFD will then calculate the number of characters it
can print in the distance specified and stamp the character in a line on the screen.

Commodore 64 Logo Tutorial A-99

Appendix: Utilities Disk

STAMPBK :D :CHAR
Equivalent to using STAMPFD with a negative number for :D.

TEACH:
How to Write Logo Procedures Without Using the Editor

TEACH is used to define procedures whenever you want to avoid the complexities
introduced by using the editor. It has the additional advantages of prompting the user for
information and not clearing the turtle graphics screen.

To define the following procedure using TEACH

TO COUNTDOWN :N
IF :N = 0 STOP
PRINT :N
COUNTDOWN :N - 1

END

type what appears below in the usual computer font. What TEACH prints is in italics. If
there are inputs, put them on the same line as the NAME, just as you would when writing
a procedure.

? TEACH
NAME: COUNTDOWN :N
> IF :N = 0 STOP
> PRINT :N
> COUNTDOWN :N - 1
> END
COUNTDOWN DEFINED
?

To run COUNTDOWN, type

COUNTDOWN 5

The screen is not cleared when TEACH is used as it is when the editor is used.
Instructions developed in IMMEDIATE mode can be copied into a procedure using
TEACH. In GRAPHICS mode, TEXTSCREEN (key<fl>) will show the previous typing,
possibly hidden by the picture. SPLITSCREEN (key<f3>) will return the picture and five
lines of text.

A-100 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

{Sgr}
WARNING: Reading a file from the disk DOES clear the screen. Therefore, read
TEACH in from the disk before beginning to type any instructions that you might want to
copy into a procedure using TEACH.

The TEACH system uses three procedures:

TEACH asks for and receives the name of the procedure and any inputs, and then passes
the information on to TEACH.BODY.

TEACH.BODY, a recursive procedure, receives the lines of the procedure (after the
prompt >), testing each for END. When END is received, TEACH.BODY completes the
defining of the procedure and passes control back to TEACH, which announces the
procedure defined.

ASK takes a prompt as input, prints it, and outputs REQUEST, unless it is an empty list,
in which case it tries again.

TEXTEDIT:
How to Save, Read, Examine, and Print Text Files

The Logo system is set up to read and save files that contain Logo procedures. By
modifying the system, one can use Logo to read and save text files and thus use the Logo
editor purely as a text editor.

To use this file, the procedures must be in the workspace before any text is typed in the
editor. So type

READ "TEXTEDIT

Normally to enter the editor you type TO followed by the name of the procedure to be
created or edited. To begin working with text in Logo, it is necessary for the edit buffer in
memory to be empty. Entering the empty edit buffer to start a text file is achieved by
typing

TO <RETURN>

This puts you into the editor, with the white line across the bottom of the screen.

Type the text you want, making use of the editing commands described in the Edit
section of the Appendix.

Commodore 64 Logo Tutorial A-101

Appendix: Utilities Disk

When typing the text, you will probably want to type in upper and lower case. Normally
when you type on the Commodore, all the letters are upper case; if you use the <SHIFT>
key, you get the graphics symbols on the front side of the key. To switch into upper/lower
case, hold down the Commodore key and hit the <SHIFT> key. To switch back, repeat
the same process. See the section called Commodore Key under Keyboard in the Getting
Started chapter of the Commodore 64 User's Guide, and the Beginning Logo chapter of
this Tutorial.

NOTE THE DIFFERENCE HERE: When you have finished and are ready to print or
save the text, leave the editor by typing

<CTRL> G

This exits the editor without making any changes to it or trying to evaluate it. For this
reason, the text will be saved and printed exactly as it appears. It is not reformatted as
procedures are. Do NOT type the <CTRL> C used to define procedures.

Use SAVETEXT (described below) immediately to save the file on the disk. You can
always replace it with a corrected version, but if you accidentally erase the text from your
workspace before you save it, you must retype the whole thing.

Read the file back from the disk using READTEXT (also described below).

{Sgr}
WARNING: To work on the file again after using READTEXT, type EDIT (or ED)
followed by a <RETURN>: If you type TO when there is text in the editor, it will be
erased. This also happens if you then edit a procedure or enter the graphics mode. If you
have not yet saved your text, it will be lost completely. However, if it is on the disk, you
can simply read it in again.

Type

EDIT

to work on the file again. (See warning above.)

The following procedures are in the TEXTEDIT file. They make use of .OPTION
commands for SAVE, READ, and PRINTER. (See also the explanation of the .OPTION
command in the Glossary.) Normally, SAVE places the contents of the workspace in the
edit buffer and then saves the buffer on disk.

A-102 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

The .OPTION will change SAVE so that it places the current contents of the buffer in the
disk file instead of first erasing the buffer and putting the contents of the workspace in it.

READTEXT :FILE
Reads a Logo text file into the editor. In this example, "SESAME has two lines in it.
Example:

READTEXT "SESAME
SHOWTEXT

This is a test.
Do you like tests?

SAVETEXT :FILE
Saves the contents of the editor to the disk in the file named. To store the lines above in a
different file (GEORGE), type

SAVETEXT "GEORGE

SHOWFILE :FILE
Reads the file named and prints it out on the screen. SHOWFILE is a combination of
READTEXT and SHOWTEXT. Example:

SHOWFILE "GEORGE

PRINTFILE :FILE
Reads the file from disk into the editor and prints the file. Uses SHOWFILE. To print the
contents of the file SESAME on the printer, type

PRINTFILE "SESAME

SHOWTEXT
Prints on the screen the text which is in the editor. See examples above. Uses
PRINT.MEM.

PRINTTEXT
Prints on the printer the text which is in the editor. Uses SHOWTEXT. Example: to print
the contents of the editor, type

PRINTTEXT

PRINT.MEM :FROM :END
The procedure used by SHOWTEXT.

Commodore 64 Logo Tutorial A-103

Appendix: Utilities Disk

WHILE:
Procedures for WHILE and UNTIL Commands

To see an example of how to use these procedures, type HELP.

WHILE :COND :ACTION
Will perform the action as long as the condition is TRUE. Both inputs must be lists. The
first input must be a statement that results in TRUE or FALSE. The second list may
contain any Logo commands. The procedure checks the condition, runs the action, and
then checks the condition again and so on.

UNTIL :COND :ACTION
Is similar to WHILE. Here, if the condition changes from FALSE to TRUE, the
procedure will stop. The procedure runs until the condition is true, whereas WHILE runs
while the condition is true.

ADVENTURE:
An Adventure Game

Just type READ "ADVENTURE and the file will start automatically and give
instructions. This is a good example of list processing.

ANIMAL:
The Game that Teaches the Computer About Animals

ANIMAL is a game in which the computer tries to guess the animal you are thinking of
by asking you questions. If it doesn't guess correctly, it will ask you for your animal's
name and a question to distinguish that animal from the animal it guessed. This
information is added to its knowledge tree for the next game.

When you are finished playing, you can type SAVE "ANIMAL, and the next time you
play, it will know the animals you taught it. To make it start out fresh, run the procedure
INITIALIZE.KNOWLEDGE.

To play ANIMAL, type

READ "ANIMAL then

ANIMAL

A-104 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

The ANIMAL game is a good example of brief, single purpose procedures:

ANIMAL
Prints the greeting, then uses GUESS with the stored :KNOWLEDGE. After a round of
the game, prints another greeting, uses WAIT for a pause, then begins again by calling
itself.

ANIMAL.INSPECTOR:
What's in the ANIMAL Knowledge Base?

This file is intended as a learning aid to be used in the discussion of the ANIMAL game.
In its use of recursion, it is similar to tree drawing programs since it actually follows the
tree of the Animal program's knowledge as it prints it out. Look at the procedures in this
file as an example of recursive programming.

The global variable :KNOWLEDGE in the file ANIMAL is the knowledge base
examined. Therefore, it is necessary to read in the file ANIMAL to use the
ANIMAL.INSPECTOR.

Any time you stop ANIMAL, you can examine the knowledge base available to
ANIMAL, by typing

INSPECT.KNOWLEDGE

INSPECT. KNOWLEDGE
uses INSPECT1 with the stored :KNOWLEDGE, beginning at level 0.

INSPECT1 :KNOWLEDGE :LEVEL
calls itself and IPRINT to inspect and print each branch of the knowledge tree.

IPRINT
Does a pretty print of the ANIMAL tree of knowledge. Type <CTRL> W (hold down the
<CTRL> key and press <W>) to stop the scrolling (to read the tree). Press any key to
resume scrolling.

Commodore 64 Logo Tutorial A-105

Appendix: Utilities Disk

DYNATRACK
A Game: The Dynamic Turtle On a Frictionless Surface

Steering without friction is a very different world, as people riding on rocket power have
discovered. DYNATRACK puts you on a rocket sled on a frictionless track and gives
you the power to do two things:

1. You can turn the sled, BUT it will keep moving in the old direction, moving sideways.
2. You can give it a burst of rocket power. The force will be applied in the direction in
which it is pointing, BUT since it was already moving, the resultant direction will be
somewhere between the original dirction {sic} and the direction in which you are
pointing.

This is one of the trickiest games you will meet. It requires strategy more than eye-hand
co-ordination.

Type

READ "DYNATRACK and then
DYNATRACK

and follow directions to play.

The dynamic turtle keeps moving when you give it a "kick." Type R to turn it right, L to
turn it left, K to kick it in the direction it is facing.

If it is moving in another direction when you "kick" it, the direction of movement will be
changed, but it will take more than one kick to change to the direction in which it is
pointing.

Try modifying the game to make the dynaturtle do other things. If you erase the line
DRAWTRACK in the procedure DTRACK, and the line CHECK.DTRACK in the
procedure DT.DTRACK, the turtle will move all over the screen.

GRAMMAR:

A Random Sentence Generator

There are two main procedures, SENT and POSTCARD, which use other procedures in
this file. SENT generates a paragraph of random length with sentences of random
construction. POSTCARD prints a short postcard with randomly selected greeting, body,
and closing.

A-106 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

The procedure RTRACE is a simple trace procedure that lets you see what is happening
as the program runs. Type RTRACE and then SENT or POSTCARD. To turn it off, type
RTRACE again.

POSTCARD
Starts by making a global variable with the name WORLD and the value of a list
containing the word POSTCARD. It next uses the procedure R to replace the
POSTCARD value with a list containing the words GREETING BODY CLOSING. It
then uses R again to randomly select a greeting (such as Dear June) to replace the word
GREETING, and so on.

SENT
Also starts by making a global variable named WORLD, whose value is a list containing
the word PARAGRAPH. Using the procedure R, SENT will replace [PARAGRAPH]
with a list containing the word SENTENCE a random number of times. Then R is used to
replace each word SENTENCE with a sentence structure picked from a list of structures.
The parts of the sentence are then replaced from lists until words are filled in for all the
parts of the sentence and the paragraph is printed out. This procedure takes up to a minute
to run so be patient.

INSPI:
Sample Logo Picture

To see the picture, type

READPICT "INSPI

The procedure which drew it was run four times with the turtle turned 90 degrees each
time and the pen color changed. Each time it was run, it was stopped after it started to
double back on itself.

To find out more detail about saving pictures see the Graphics Chapter section called
Saving, Reading and Erasing Pictures.

TO INSPI :DIST :ANGLE :INCREMENT
FD :DIST
RT :ANGLE
INSPI :DIST :ANGLE + :INCREMENT :INCREMENT

END

Type

INSPI 8 0 13

Commodore 64 Logo Tutorial A-107

Appendix: Utilities Disk

PIG:
A Pig Latin Program

The pig Latin program is an elegant example of the use of recursion and the word and list
handling capabilities of Logo. However, the program is not perfect. For instance, how
can words containing the letter Y be handled properly?

To start this program, type PIG.

PIG
Prints a line asking you to type in a sentence. The sentence you type becomes the list
which is the input to PIGSENT.

PIGSENT :LIST
Outputs the list converted to pig Latin. It does this by calling PIGWORD to convert the
first word in the list and then calling itself, PIGSENT, with a new input of all but the first
word in the list. This is repeated with the new shorter list and so on until the entire list has
been converted.

PIGWORD :WORD
Its input is a word from the list used by PIGSENT. PIGWORD uses VOWEL? to check if
the first letter of the word is a vowel, and if it is, it adds AY to the word. If the first letter
is a consonant, PIGWORD calls itself with a new input. the new input is the old word
with the first letter moved to the end of the word. This continues until it finds a vowel.
(What happens if there is no vowel in the word?)

VOWEL?
Outputs true or false if its input is equal to A,E,I,O,U, or Y.

SNOW:
A Recursive Snowflake Drawing

The SNOW procedure uses a triangle as its basis and modifies it. The DEMO procedure
steps through the levels one by one to give you an idea of how the snowflake is formed.

SNOW :SIZE :LEVEL
SIZE refers to the length of a side and LEVEL refers to the number of times or recursive
levels which the program goes through. The procedure looks like a triangle procedure
except that SIDE replaces FD.

A-108 Commodore 64 Logo Tutorial

Appendix: Utilities Disk

SIDE :SIZE :LEVEL
The turtle will only move when LEVEL is 0, so that all of the sides (line segments) will
be of the same SIZE. The side of the triangle is broken into thirds, and the first and last
third are drawn as they would be normally. The middle third is not drawn, but is treated
as the base of a triangle one third the size of the original. The other two sides of this
smaller triangle are drawn outward from the original triangle. At the next level of
recursion each line segment is broken into thirds using the same process. The more
levels, the more the sides are broken up into smaller pieces.

TET:
A Graphics Procedure of Variable Complexity

TET is a good example of a recursive procedure. It draws tetrahedra on the points of
tetrahedra. TET takes two inputs, SIZE and LEVELS. The largest tetrahedron is of the
size specified. On its points are drawn half-size tetrahedra, on their points are drawn
quarter-size tetrahedra, and so on, to the level of recursion specified. A level of 1 draws
only the one large tetrahedron. Try

TET 50 3

Spaces in the procedure listing below are to help isolate the individual commands. They
are not a necessary (or usual) inclusion. The REPEAT statement must be typed as one
line (without a <RETURN> in it).

TO TET :SIZE :DEPTH
IF :DEPTH = 0 STOP
REPEAT 3 [LEG :SIZE

TET :SIZE * .5 :DEPTH - 1
RT 150 FD :SIZE

RT 150 LEG :SIZE RT 180]
END

TO LEG :SIZE
FD :SIZE / (2 * COS 30)

END

ADDRESSES, AMODES, ASSEMBLER, OPCODES: Interfacing Logo and the
Assembler

See the section on the assembler in the Reference Guide for a detailed explanation of the
Logo/Assembly language interface.

Commodore 64 Logo Tutorial A-109

Appendix:Utilities Disk

SPRITES, SPRED, ANIMALS, ASSORTED, RUNNER, SHAPES, VEHICLES,
DINOSAURS, SUBMARINE, SPRITEDEMOS, VELOCITY:

See the chapter on Sprites for more information about these files.

MUSIC, SOUND, TWINKLE:

See the chapter on Music for more information about these files.

A-110 Commodore 64 Logo Tutorial

COMMODORE 64 LOGO REFERENCE GUIDE

1. Use of the Logo System

The Logo system includes a full interpreter for the Logo language, a complete text editor
for editing procedure definitions, and an integrated "turtle graphics" system. This section
provides notes on how these different functions interact.

1.1 Modes of Using the Screen

The Logo system uses the display screen in three different ways, or "modes."

1.1.1 Nodraw Mode

This is the mode in which the system starts. Logo prompts the user for a command with a
question mark, followed by a blinking square called the "cursor." You may type in
command lines, terminated with RETURN. Logo executes the line and prints a response,
if appropriate.

Whenever the cursor is visible and blinking, Logo is waiting for you to type something,
and will do nothing else until you do.

The system includes a flexible line editor that allows you to correct any typing errors in a
command line which you have typed in DRAW or NODRAW mode. The available
editing operations are the ones described in section 1.2.2 corresponding to the keys: DEL,
INST, CLR, the up- and left-arrow keys, the CRSR arrow keys, CTRL-A, CTRL-D,
CTRL-L, CTRL-G, CTRL-K, CTRL-P.

1.1.2 Edit Mode

Executing the commands TO or EDIT places Logo in edit mode. For example, if you
type

TO POLY :SIDE :ANGLE

followed by RETURN, the system will enter the screen editor with the typed line of text
on the screen. Logo indicates that it is in EDIT mode by printing "EDIT: CTRL-C TO
DEFINE, CTRL-G TO ABORT" in reverse-color letters at the bottom of the screen. The
screen will change color to remind you that Logo is in edit mode.

At this point you can use all of the editing operations described in section 1.2.2 to create
and/or edit the text for the procedure, Typing CTRL-C or the RUN/STOP key will exit
the editor, cause the procedure to be defined according to the text you have typed, and
enter nodraw mode. Typing CTRL-G aborts the edit. Logo will return to nodraw mode
without any procedures being defined. If you begin editing a procedure, and decide that
you don't want to change it after all (or would like to start over), type CTRL-G. The
procedure you were editing will not be changed.

In the editor mode, RETURN is just another character which causes the cursor to move to
the next line. CTRL-C (or RUN/STOP) causes Logo to evaluate the contents of the edit
buffer just as RETURN in DRAW and NODRAW modes causes Logo to evaluate the
line just typed. See the section on Editing below.

Commodore 64 Logo Tutorial A-111

Appendix: Reference Guide

To edit a previously defined procedure, type EDIT followed by the name of the
procedure you wish to edit. No quotation marks are required for this and related
commands (PRINTOUT and ERASE). The following line will edit the POLY procedure
defined above, when typed in either DRAW or NODRAW mode:

EDIT POLY

You need not enter the editor if you want only to examine a procedure; the PRINTOUT
command (abbreviated PO) will show the definition of a procedure. Type PO followed
immediately by the procedure name (as above). Printing out a procedure is often more
convenient than using the editor, since it doesn't clear the screen.

To edit the most recently defined procedure, type just EDIT (or its abbreviation, ED). In
DRAW mode, typing EDIT brings the current definition of the procedure most recently
defined or printed out (using PRINTOUT or PO) into the edit buffer. In NODRAW
mode, however, typing EDIT with no inputs returns to EDIT mode with the contents of
the edit buffer intact. For example, after a READ or SAVE, everything read or saved will
be in the edit buffer. Also, if you had aborted the definition of a procedure with CTRL-G,
the edit buffer contents at the time you typed CTRL-G will still be in the edit buffer; you
can retrieve it by typing EDIT not followed by a procedure name. Typing EDIT followed
by the procedure name would edit the procedure as it is currently defined.

1.1.3 Draw Mode

In DRAW mode, you use the turtle for drawing on the screen. If you attempt to execute
any turtle command while in nodraw mode, the system will enter draw mode before
executing the command. The NODRAW command (abbreviated ND) exits draw mode
and enters nodraw mode. Actually, there are different types of draw mode.

Splitscreen mode is the normal way in which draw mode is used. Five lines at the bottom
of the screen are reserved for text, and the rest of the screen shows the field in which the
turtle moves. The turtle field actually extends to the bottom of the screen and so is
partially masked by the five-line text region. In fullscreen mode the text region
disappears and you can see the entire turtle field. You can still type commands, but they
will not be visible. If the system needs to type an error message, it will first enter
splitscreen mode so that the message will be visible.

You can use the function keys f5 and f3 to switch back and forth between splitscreen and
fullscreen mode. Pressing f5 while in splitscreen mode will enter fullscreen mode.
Pressing f3 will restore splitscreen mode.

This five-line text display is sometimes an inconvenience, since error messages are
occasionally too long to fit. If you press the fl key while in graphics mode, the turtle
picture will disappear and the screen will display all text, just as in NODRAW mode. The
difference is that Logo is actually still in DRAW mode: turtle commands can be

executed, although you will not see the picture being drawn. To make the graphics screen
visible after using fl, type f5 to return to fullscreen mode, or f3 to go
back to splitscreen mode.

A-112 Commodore 64 Logo Tutorial

Appendix: Reference Guide

Since it is useful to switch among these modes under program control, the primitives
TEXTSCREEN, SPLITSCREEN and FULLSCREEN are provided. Note that the
TEXTSCREEN command is different from NODRAW. NODRAW clears the text screen,
clears the graphics screen, and resets all the graphics parameters (pencolor, turtle
visibility, pen state, background color, and wrapping mode). You may return to
splitscreen or fullscreen mode with no changes after execution of the TEXTSCREEN
command, but not after exiting draw mode with NODRAW.

Here is a list of control characters and function keys not related to editing functions. All
are available in draw mode and nodraw mode, even while procedures are running. Some
exist in edit mode, also, and are specially indicated.

The special actions of the following keys may be inhibited if necessary; see section 4.12.

Non-editing Control Characters and Function Keys
(fl) In draw mode, this function key gives full text screen.

(f3) In draw mode, this function key gives mixed text/graphics screen.

(f5) In draw mode, this function key gives full graphics screen.

CTRL-G In edit mode, exits the editor without processing the edited text. In draw or
nodraw mode, stops execution and returns control to toplevel.

CTRL-W Stops program execution. Typing any character other than CTRL-G will
resume normal processing, including CTRL-W. The CTRL-W acts as a switch. The first
time you type it, the program will stop execution or printing of a listing will stop. The
second time you type it, program execution or printing will start again. See also TRACE
(section 4.10) for a method of executing procedures slowly.

CTRL-Z Causes Logo to pause. You may type anything and Logo will execute it as
if it were a line of the current procedure. Type CO or CONTINUE to continue.

1.2 Editing

The Logo system contains a fully-integrated screen editor and a compatible line editor.
The screen editor is used for defining Logo procedures in EDIT mode, and the line editor
is used for typing Logo commands to be executed in DRAW and NODRAW modes.

1.2.1 Line Editor

While you are typing a line of characters to Logo, you can ignore the line editor until you
need it. If you mistype {sic} a character, you can rub it out with the DEL key. If you
forget to put a word at the beginning of the line, you can place the cursor there with
CTRL-A and type the missing word. The characters will push the rest of the line to the
right; nothing will be lost or overwritten. If you want to insert characters anywhere in the
line, simply move the cursor there with the arrow keys, and type

Commodore 64 Logo Tutorial A-113

Appendix: Reference Guide

what you want. To go to the end of the line, type CTRL-L. To delete the character at the
cursor, use CTRL-D.

To finish the line and have Logo act upon it, type RETURN. It is not necessary for the
cursor to be at the end of the line; all characters you see on the line will be read by Logo.
To delete all characters from the cursor to the end of the line, use CTRL-K.

Lines typed to Logo may "wrap around" to the next screen line. The editing commands
will still work on them exactly as if the line did not spread over more than forty
characters. Specifically, at the right screen edge, the right CRSR arrow key will still
move to the next character in the line, even though it is at the left edge of the screen and
on the next row of characters.

Logo remembers the most recently typed line in both DRAW and NODRAW modes so
that you can insert it into the current line by typing the CRSR up arrow key (or CTRL-P).

1.2.2 Screen Editor

For defining procedures, Logo has a screen editor which you enter by typing EDIT, ED,
or TO, followed by the name of the procedure you wish to define.

Once Logo is in "edit mode" the characters you type will appear on the screen. Pressing
RETURN will cause the cursor to move down to the next line. If the cursor was not at the
end of the line, it will split the current line into two lines. It will not cause Logo to
execute the line. In edit mode you can delete the RETURN, just as you can any other
character, and restore the split line to one line.

Various other commands are available for editing the line on which the cursor appears
and moving to other lines. To move to the next line, type the CRSR down key, or CTRL-
N. To move to the Previous line, type the CRSR up key, the up-arrow key (next to
RESTORE), or CTRL-P.

Lines may be of any length, as long as they fit in the edit buffer. Lines which are longer
than 40 characters "wrap around" the screen. You can tell they are continued lines
because an exclamation point ("!") is shown in the last screen column. This mark is not a
part of the procedure being typed, and serves only as a reminder that the line does not
actually end at that point.

Note that there is a slight difference between edit mode and draw or nodraw mode; only
edit mode displays the exclamation marks!

Although Logo procedures are seldom more than a few lines long, the text you may edit
is not limited to one screen page. If the text you are typing begins to overflow the current
page, the system will automatically shift the display so that the current line is in the
middle of the screen. If you use the up and down CRSR arrow keys or type CTRL-P or
CTRL-N and move to either the top or bottom edge of the screen, the next page will
appear. The CTRL-F key inside edit mode moves immediately to the next page of text.
To move back to the previous page, type CTRL-B. If you are on the first page, CTRL-B
will move to the top of it; similarly, on the last page, CTRL-F will move to the end. If the
text you are editing is more than one page long, you can use the HOME key to center the
current line on the screen.

A-114 Commodore 64 Logo Tutorial

Appendix: Reference Guide

To exit the editor and have the procedure or procedures you typed in be defined, type
CTRL-C, or it the RUN/STOP key. To exit without having the procedure defined, type
CTRL-G. After typing CTRL-G, you can return to the editor with ED or EDIT, and have
all the text still there (provided you didn't use graphics or filing in the meantime).

The text you type in the editor doesn't have to be a procedure. See the Tutorial section on
text editing to find out how to use Logo for editing text, saving it on disk, and printing it.

Here is a summary of the editing commands available:

Keyboard Editing Commands

HOME In edit mode, scrolls the text so that the line containing the cursor is at the
center of the screen. This key has no effect if the text is shorter than one page. Use this

key to move text around on the Commodore screen until it is placed conveniently by
typing HOME followed by one of up/down cursor motion keys as necessary.

SHIFT-CLR In immediate mode, clears the text screen and aborts the current line being
typed.

SHIFT-INST Quotes the following character. Allows control characters and other
characters to be inserted in Logo words. SHIFT-INST followed by CTRL2 (WHITE) will
insert the special character for changing the character color to white. Another example:

TO REV
PRINT "SHIFT-INST CTRL-9 HELLO SHIFT-INST CTRL-0

END

As usual in Logo, there should be no spaces after the quote mark when you type in the
example above. SHIFT-INST allows you to insert any character except return (including
cursor motion keys and CTRL-G).

DEL Rubs out the character immediately to the left of the cursor and moves the
cursor one space to the left.

CRSR keys up, down, left, right Move the cursor one character to the left, right, up
or down, without rubbing out any character. Note that although the CRSR up and CRSR
left keys require the shift key, the left arrow key (located near the I key) and the up arrow
key (located near RESTORE) serve the same function (without auto-repeat).

CTRL-A Moves the cursor to the beginning of the current line. CTRL-A was
chosen for this command because it lies at the beginning of a row of the keyboard, and is
the first letter in the alphabet.

Commodore 64 Logo Tutorial A-115

Appendix: Reference Guide

CTRL-B When editing more than one screenful of text, moves the cursor one
screenful of text backwards, or to the beginning of the buffer if not that much text
precedes the cursor.

CTRL-C Exits the editor. Processes the edited text.

CTRL-D Deletes the character at the current cursor position, that is, the character
over which the cursor is flashing.

CTRL-F When editing more than one screenful of text, moves the cursor one
screenful of text forward, or to the end of the buffer if not that much text follows the
cursor.

CTRL-G In edit mode, exits the editor without processing the edited text. In all
modes, stops execution and returns control to toplevel.

CTRL-K Deletes all characters to the right of the cursor on the current line.

CTRL-L Moves the cursor to the end of the current line.

CTRL-N Moves the cursor down to the next line. Equivalent to the CRSR down
arrow key.

CTRL-O Opens a new line at the cursor position. That is, CTRL-O is equivalent to
typing RETURN and then CTRL-P. It is most useful for adding new lines in the middle
of procedures.

CTRL-P In edit mode, moves the cursor to the previous line. In draw or nodraw
mode, retrieves previous input line so that it can be edited and/or re-executed. Equivalent
to the CRSR up arrow key.

1.3 Using Commodore Peripherals

Logo's ordinary input and output operations deal with the Commodore keyboard, the
screen, and one disk drive. There are also commands for reading input from up to four
game paddles or two joysticks that can be attached to the Commodore. (See the
PADDLE, PADDLEBUTTON, JOYSTICK, and JOYBUTTON primitives.)

1.3.1 Printing Procedures on a Printer

The following examples will work if you have a VIC-1525E serial printer attached to
your Commodore 64 at serial address 4. If you have a VIC-1525 printer (manufactured
for VIC-20 computers), see your Commodore dealer for update kit information.

To obtain a paper printout of a procedure called CIRCLE, you could type

A-116 Commodore 64 Logo Tutorial

Appendix: Reference Guide

PRINTER
PRINTOUT CIRCLE
NOPRINTER

PRINTOUT ALL or PO ALL will list all procedures and names. A list of procedure
names or variables may be used in place of a single procedure name. This allows ordering
of the printout sequence.

The following command line will print out the procedures BIRD, HEAD, WINGS, TAIL,
and LEGS, in that order:

PRINTER
PO [BIRD HEAD WINGS TAIL LEGS]
NOPRINTER

To list all the procedures, but no names (global variables), type

PO PROCEDURES

Here is a procedure which prints out procedures to the printer:

TO HPO :PROCEDURE
PRINTER
RUN LIST “PRINTOUT :PROCEDURE
NOPRINTER

END

HPO means "hardcopy printout." Note that since HPO is a regular procedure which gets
evaluated inputs, you must type a quotation mark before the name of the procedure you
wish to print out. Since PRINTOUT does not evaluate its input, it is impossible to pass
procedure names to it through a variable name. Therefore, we construct a list and then
RUN that list. Use HPO like this:

HPO “CIRCLE
HPO [BIRD TAIL]

The simplest way to produce a printout of the turtle graphics screen is to save the picture
on disk using the SAVEPICT command. The Commodore VIC-1525E printer can print a
saved image of the turtle graphics screen. You can store pictures on disk with the
SAVEPICT (section 1.5.2) command. SAVEPICT saves the picture as two files: one
whose name ends in ".PIC1" and the other in ".PIC2". The .PIC1 file contains the picture
elements (pixels) and one additional byte at the end indicating background color and
mode (SINGLECOLOR or DOUBLECOLOR). The .PIC2 file contains color information
and is used only by the READPICT command.

The PRINTPICT program on the Utilities Disk will print a saved picture on the VIC-
1525E printer. Note that you must exit Logo to use this program.

Commodore 64 Logo Tutorial A-117

Appendix: Reference Guide

Since the aspect ratio (squareness of the dots that make up the image) of a printer is
different from that of a video monitor or television, figures that look square on the screen
will come out rectangular when printed on paper. If you are producing output especially
for printing, you might want to determine the proper aspect ratio to use with your printer.
Frequently you can compromise by setting the aspect ratio to be between that of the
monitor and that of the printer, with negligible bad effects. See the description of
the .ASPECT primitive, section 4.11.

1.4 Color Control

If you have a color TV monitor, you can use the PENCOLOR command (abbreviated
PC) to change the color of the lines that the turtle draws. You can also use the
BACKGROUND command (abbreviated BG) to make the turtle draw on backgrounds of
various colors. Both PENCOLOR and BACKGROUND take a number 0 through 15 as
input. (PENCOLOR also accepts -1 as input, which is equivalent with PENERASE. See
the PENERASE primitive.)

The actual color that appears on the screen corresponding to any of these color names can
vary greatly depending on the adjustment of the TV screen. If you have a black and white
monitor, the "colors" will appear as striped vertical lines. See "Drawing in Black and
White" below.

These considerations aside, the correspondence of colors to numbers is:

number color
0 black
1 white
2 red
3 cyan
4 purple
5 green
6 blue
7 yellow
8 orange
9 brown
10 light red (LRED)
11 dark gray (DGRAY)
12 medium gray (MGRAY)
13 light green (LGREEN)
14 light blue (LBLUE)
15 light gray (LGRAY)

Drawing in PENERASE (or PENCOLOR -1) makes the turtle draw with an eraser
instead of a pen: all dots or lines it crosses are erased.

If you don't explicitly give any BACKGROUND or PENCOLOR commands, Logo will
default to BACKGROUND 11 (light grey) and PENCOLOR 1 (white).

The Utilities Disk contains a file of Logo names for these colors. After reading the file
COLORS, you will be able to refer to these colors by names:

A-118 Commodore 64 Logo Tutorial

Appendix: Reference Guide

READ "COLORS
PO NAMES
BACKGROUND :BLUE
PENCOLOR :WHITE

Drawing in Black and White

If you have a black and white monitor or television set, you may wish to use Logo in
Black and White mode, in which all background, text, and pen colors are either black or
white. Immediately after starting Logo, insert the Utilities Disk and type

READ “B&W

Logo will restart in Black and White mode, and will remain in it until loaded from disk
again. Calls to GOODBYE will not affect Black and White mode.

1.4.1 Color Modes

The commands SINGLECOLOR and DOUBLECOLOR modify the way the turtle draws
lines. The SINGLECOLOR setting allows the turtle to draw in only one color per 8 x 8
pixel region. (A pixel is a dot of light on the screen, about equivalent to a turtle step.) If
you draw over a line in a different color, a small section of the old line will change color.
Lines drawn in SINGLECOLOR mode are thinner and more precise, but the colors are
harder to see than in DOUBLECOLOR mode. Additionally, the STAMPCHAR primitive
works best in SINGLECOLOR mode.

All sixteen colors may be used in both SINGLECOLOR and DOUBLECOLOR modes.
Note that when switching from one mode to the other, the graphics screen is cleared, and
PENCOLOR and BACKGROUND are reset to the default values. The default values can
be changed with the .OPTION command, See section 4.12.

Logo starts up in SINGLECOLOR mode. To compare the effects of these two modes, try
running a turtle graphics procedure, and then type DOUBLECOLOR and run it again.

In doublecolor splitscreen mode with certain background colors, a thin horizontal line
will appear separating the graphics area from the text area. This is normal and should be
no cause for concern.

1.5 The Logo File System

The Logo file system allows you to save procedure definitions on floppy disk. A user
may have many files on a single disk; the files are distinguished by their names. The
names of the files are listed in the disk catalog.

1.5.1 Disk Files

When you use Logo, you should normally have a Logo file diskette mounted in the disk
drive. File diskettes may be created as described in the Tutorial chapter "Beginning
Logo" and in the VIC-1541 floppy disk drive manual. To save your workspace, use the
SAVE command. For example, the following will save all the procedure definitions and
names currently in the workspace in a file

Commodore 64 Logo Tutorial A-119

Appendix: Reference Guide

named MYSTUFF. If the disk already had a file with the name you chose, the old file
will first be deleted.

SAVE “MYSTUFF

SAVE saves everything in the workspace and will not save just a procedure by the same
name as the input to SAVE. File names and procedure names are independent. SAVE
may take two inputs if SAVE and the inputs are enclosed in parentheses. The first input is
the file name and the second a list of procedures to save. The list may additionally
contain the words NAMES or PROCEDURES to invoke saving all variables or all
procedures:

(SAVE "ROCKET [ROCKET ROCKTOP ROCKMIDDLE ROCKBOTTOM])

The READ command takes a file name as input and reads the procedures and names from
that file into the workspace. The procedures and names will be added to the ones
currently in workspace. (Logo filing makes use of the same memory area as for drawing

pictures and editing procedures. Issuing any filing command while in draw mode will
first move you to nodraw mode.)

Notice that the file names given as inputs to SAVE and READ are preceded by a
quotation mark and have no following quote. If you leave off the quote, Logo will
assume you mean to call a procedure, and expect that procedure to output a file name.

The CATALOG command lists all the files on the disk. Logo workspace files will be
listed with the characters ".LOGO" appended to the name. For example, the file created
by

SAVE “MYSTUFF

will be listed in the catalog as MYSTUFF.LOGO. Do not include the .LOGO part of the
name when you use the READ or SAVE commands.

To remove a file from the disk, use the ERASEFILE command, which takes as input the
name of the file to be erased. To delete other types of files, use the DOS command, as
described later.

1.5.2 Saving Pictures

In addition to saving procedure definitions, Logo also allows you to save a graphics
screen image on the disk, so that it can be read back in and displayed. To do this, use
SAVEPICT and READPICT.

SAVEPICT, which is similar to SAVE, takes a name as input. It saves on the disk the
picture currently on the turtle graphics screen. (SAVEPICT should only be done when
you are in graphics mode.) READPICT reads in a picture that was saved by SAVEPICT,
and displays this picture on the screen. When you do a CATALOG you will notice that
two files are generated, one with ".PIC1" appended to the name, and the other with
".PIC2" appended. Do not include the .PIC1 or .PIC2 part of the name when you use the
READPICT command, since Logo assumes it any time you use a picture filing
command.

A-120 Commodore 64 Logo Tutorial

Appendix:Reference Guide

When you use READPICT, Logo automatically restores the background color and color
mode (SINGLECOLOR or DOUBLECOLOR). Anything already on the graphics screen
will be erased.

To erase a picture from the disk, use the ERASEPICT command, which takes as input the
name of the picture to be erased.

See section 1.3.1 to find out how to get paper printouts of these files.

Commodore 64 Logo Tutorial A-121

Appendix: Reference Guide

2. Miscellaneous Information

2.1 Self-starting files

The Logo READ primitive reads a file from disk and defines the procedures and names it
contains. Usually, you must run some procedure to start a program running. In some
cases, you might want to have programs which start automatically on loading. A file
containing such a program is called a "self-starting file." To make a self-starting file,
create a variable named STARTUP containing a list of Logo commands that you want to
be RUN after Logo reads in the file.

MAKE “STARTUP [START]

This assumes that there is a procedure named START. Saving the workspace with the
Logo SAVE command causes STARTUP to get saved with it, just as are all other global
variables.

When you READ the file back into the workspace, Logo will attempt to execute the
commands in STARTUP. If :STARTUP is not a list, nothing happens, and no error is
generated.

If the file had been saved as DEMO, you would type

READ “DEMO

The procedures load and then :STARTUP runs. In this case :STARTUP runs the
procedure START. (The file INSTANT on the Utilities disk is set up this way.)

If you have a value of STARTUP in the workspace and you do not want it to be
overwritten when a new file having a STARTUP variable is read in, use the following
procedure:

TO LOCALREAD :FILE
LOCAL “STARTUP
READ :FILE

END

This procedure causes the variable STARTUP in the file being READ to be treated as a
local variable. After it runs and the procedure stops, it disappears leaving the value that
STARTUP had before the file was read.

Using READ in a procedure instead of immediate mode causes another change; normally
as each procedure is read into the workspace, Logo prints a message saying that that
procedure is DEFINED. In this case, nothing is printed out, except that the prompt is
printed after the file is read in.

Sometimes you might need to read in and edit the contents of a self-starting file. To
keep :STARTUP from being RUN, hold down the Commodore key until the red light on
the disk drive goes out. The STARTUP variable will still be defined, but no special
action will occur.

A-122 Commodore 64 Logo Tutorial

Appendix:Reference Guide

2.2 INST key - Printing Non-Standard and Reverse Characters

The INST key allows you to add non-standard characters to Logo words. This includes
the CTRL characters as well as the cursor motion keys. For example, INST followed by a
CTRL-2 (white) will cause any further letters typed to be white. Returning to the default
color can be done using the INST and CTRL-7. Following is another example which will
set the characters to reverse, print HELLO in reverse, and turn off the reverse setting.

TO REV
PRINT “SHIFT-INST CTRL-9 HELLO SHIFT-INST CTRL-0

END

You may use the INST key to insert the two solid arrow keys and various other function
keys. Any key other than RETURN may be inserted in this manner.

Another use for the characters inserted with the INST key is in procedures which read
characters from the keyboard and act on them. For example

TO PLAY
COMMAND READCHARACTER
PLAY

END

TO COMMAND :CHAR

IF :CHAR = “F FD 10 STOP
IF :CHAR = “B BK 10 STOP
IF :CHAR = “SHIFT-INST SHIFT-CLR CLEARSCREEN STOP
IF :CHAR = "SHIFT-INST DEL PENERASE STOP
IF NUMBER? :CHAR PENCOLOR :CHAR

END

Note that you need not use the INST key when actually running the above procedures,
only when typing them in.

2.3 Various System Parameters

This section contains various esoteric information about Logo and about this specific
implementation. It is certainly not necessary to know what is presented here in order to
use Logo; these topics are covered for the curious.

The Graphics Screen

When pointing straight up, the turtle can go 129 steps before wrapping around to the
bottom of the screen. It can go 130 steps downward before wrapping around to the top. It
can go 160 steps when pointing to the left, and 159 when going to the right. If you change
the aspect ratio (see the .ASPECT primitive listed in the Glossary), then the allowable
vertical range will change, but the horizontal range will remain the same.

Commodore 64 Logo Tutorial A-123

Appendix: Reference Guide

Numbers

The smallest positive number on which Logo can perform operations is 1.999N38, and
the largest is 1.7E38. The largest positive number which is not "floating point" is
2147483647, and the largest negative is - 214783647. Sequences of digits which
normally represent numbers outside this range are considered to be the names of
procedures.

ASCII Values

There is a correspondence between the characters available in the Logo character set and
the numbers 0-255. The ASCII primitive, if given a word of one letter, outputs the
number associated with that letter. The CHAR primitive is the inverse, returning a single-
letter word. The character represented by 0 (often called "null") is special in Logo: it
represents the empty word. Just as SENTENCE ignores empty lists as input, WORD
ignores the empty word. It is impossible to make a word which contains the empty word,

unless that word is itself the empty word. Some special output devices receive control
codes in the form of characters. Such devices may require an ASCII 0; it may be printed
with the .CTYO command (see section 4.8).

The READCHARACTER primitive, abbreviated RC, reads a key from the keyboard and
outputs a single-letter word. There are certain "interrupt" keys that will not normally be
output by RC. These are Fl, F3, F5, CTRL-W, CTRL-Z, and CTRL-G. You may disable
the special actions of these keys and enable RC to output them. See section 4.12.
To find out the ASCII value of any other key, type PRINT ASCII RC and RETURN, and
type the key. Also, the Commodore 64 User's Manual contains a table of characters and
their equivalents.

Line length

Lines typed in to Logo at the toplevel editor may not be more than 256 characters long.
Additionally, the list which is input to RUN and REPEAT, and each sub-list in the
second input to DEFINE must abide by this restriction.

Lines typed in the screen editor (as with TO procedurename) may be of any length, as
long as it fits in the edit buffer. Similarly, lines read in from disk files may be of any
length. The edit buffer is 8192 characters long. If you try to SAVE or EDIT procedures
which take up more than 8192 characters, Logo will print the error message "TOO
MANY CHARACTERS TO EDIT" or "TOO MANY CHARACTERS TO SAVE." The
best way to proceed is to EDIT or SAVE a selected list of procedures, rather than the
whole workspace. See the documentation on the EDIT and SAVE primitives.

Storage in Logo

In Logo, each procedure is stored as a list of lines, which are themselves lists of words
and other lists. (Actually, this implementation of Logo usually stores procedures as arrays
of arrays, since that method takes half as much space; however, when there isn't enough
contiguous memory, Logo uses the list-of-lists method. It is possible for the curious to
tell how procedures are stored by PO'ing the procedure: If each line is indented one
space, the procedure is stored in the array form. If not, it is stored in the rarer list form.
This information is completely arcane.) Each use of a word takes up one storage node, no
matter how many characters it has. The names themselves are stored only once, in the
Logo list of all words (accessible via the .CONTENTS primitive). Thus, there is almost
no penalty for using long, descriptive procedure and variable names.

A-124 Commodore 64 Logo Tutorial

Appendix:Reference Guide

When Logo runs out of storage space, it enters a process called garbage collection. This
simply means that Logo is finding out what parts of memory are not being used, and
makes a big list of all of them. Then, when Logo needs to use a storage node, it takes it
off of this list.

Since Logo can't do anything else (like run your procedures) when it is garbage
collecting, the process can interfere with certain programs where real-time response is
important. If this becomes annoying, place calls to the .GCOLL primitive at natural
pauses in the program.

2.4 Memory Organization Chart

This chart describes how the Logo system uses the available address space in the
Commodore 64.

Location Use Size
0000-00FF Page 0 (Shared) 1/4K
0100-01FF Stack 1/4K
0200-03FF Kernel internal storage 1/2K
0400-07FF Text Screen (matrix) 1K
0800-0BFF Graphics matrix 1K
0C00-0DFF 8 Sprites 1/2K
0E00-0FFF Logo internal storage 1/2K
1000-1FFF Recursion Stack 4K
2000-4000 Graphics screen 8K
4000-AFFF Logo Interpreter 28K
B000-DFFF Nodespace 12K
E000-EBFF Typecodes 3K
EC00-FDFF Text Strings 4 1/2K
FE00-FF00 Input line 1/4K
FF00-FF8F UNUSED 1/8K
FF90-FFFF Kernel, 6510 vectors 1/8K

Commodore 64 Logo Tutorial A-125

Appendix: Reference Guide

3. Assembly Language Interfaces to Logo

The Logo system for the Commodore 64 has been designed to be both powerful and easy
to use. Writing and executing programs in Logo using the primitives listed in the
Glossary should be sufficient for most purposes. However, there are situations in which it
is desirable to extend the capabilities of the system by getting direct access to machine
language.

Warning: This chapter will only be useful/intelligible to people who are familiar with
assembly language programming on the 6502 CPU. If you have an interest in this section
but no experience in assembly language programming, read the Commodore 64
Programmer's Reference Guide, which contains an introduction to machine language.

The Logo system has various "hooks" built in to it that enable users to directly access
memory locations and to interface assembly language routines to Logo programs. The
Logo Utilities Diskette includes a 6502 machine language assembler that aids in doing
this.

Another hook built in to Logo allows you to create simple animation effects by supplying
a new shape to be displayed in place of the Logo turtle. Another hook allows you to
modify the behavior of the Logo editor so that it can be used as a regular text editor rather
than as a procedure editor and to access disk files in non-standard ways. See the section
on the .OPTION primitive (section 4.12) to find out about these and other hooks into the
Logo system.

3.1 .EXAMINE and .DEPOSIT

These two commands are essentially the BASIC language PEEK and POKE
routines .EXAMINE takes an address as an input and returns (as a number) the byte
stored in that address .DEPOSIT takes two inputs, an address and a numeric value, and
deposits the value in the byte specified by the address. These commands are useful for
communicating with special-purpose I/O devices, especially in cases where the facility
supplied by PRINTER/NOPRINTER is insufficient.

Needless to say, .DEPOSITing into arbitrary memory locations can cause Logo to crash
or do other unfriendly things. Note that the addresses used with these commands are
ordinary Logo numbers, which are expressed in base 10, even though it is customary to
think of machine addresses as written in hexadecimal notation. For many purposes it
would be useful to write a conversion routine that converts from hexadecimal to base ten.
(Throughout this section, we use the convention of specifying hexadecimal numbers as
prefixed by a dollar sign, e.g., $9E is 158 decimal.) That way, you could type, for
example

.EXAMINE HEX "9E

rather than

.EXAMINE 158

The Commodore 64 is based on the 6510 microprocessor. The 6510 has the same
instruction set as the 6502, but (as used in the Commodore 64) has a powerful "memory
mapping" facility of which Logo makes considerable use. By this means, several
numbers can be stored in apparently the same

A-126 Commodore 64 Logo Tutorial

Appendix: Reference Guide

location. The contents of the least significant three bits of location I control which set of
memory addresses is in use. The .DEPOSIT and .EXAMINE primitives have an option
which controls which memory map is in effect during their execution. Normally this map
is 6, which allows reading and writing to the I/O region of memory ($D000-$DFFF), and
examining the KERNEL ($E000-$FFFF). Another configuration available is 4, which lets
you access the Logo user storage space, so you can look at and alter Logo objects (lists,
words and procedures). In memory map 2, locations $D000$DFFF refer to the character-
generator ROM. You can use this mode to read the definitions of the Commodore 64
character set.

Note that the .DEPOSIT and .EXAMINE commands have separate memory map options,
so you must change both if reading and writing a bank of memory is necessary.
Additionally, .DEPOSITing to KERNEL or character set ROM is not recommended,
since it will instead alter read/write memory at the same location. See section 4.12 to find
out how to set these and other options. The Commodore 64 Programmer's Reference
Guide has a full discussion of memory maps in the section "Memory Management on the
Commodore 64."

3.2 Writing Your Own Machine-Language Routines

You can interface your own machine-language routines to Logo by using the .CALL
primitive .CALL takes two inputs: the first is the address of the routine, and the second is
an integer input that the routine may examine. The routine may output an integer or
output nothing. The .CALL primitive always requires two inputs, regardless of whether
the user routine chooses to examine the second one.

.CALL transfers control to the address specified by its first input. Naturally, before doing
this, you should assemble an appropriate routine and store it at the address. The available
memory for user machine code begins at $0C40 and extends to $0DFF. (Note that this is
the same region of memory reserved for sprite shapes, so if you use sprite shapes you
cannot load assembly language routines.) You can do the assembly by hand and store the
routine using .DEPOSIT, but you will find it much more convenient to make use of the
Logo assembler described in section 3.3.

When your routine begins executing, the 6510 CPU will be in memory map 6, and page
zero locations NARG1 and NARG1+1 contains the first input to.CALL-which is just the
address of the routine itself. NARG1 + 2 and NARG1 + 3 are guaranteed to contain zero
at the time the routine is called. The routine may use locations FREEPZ through
FREEPZ+32 as temporary storage locations, without worrying about restoring them

before returning. These storage locations are volatile; that is, Logo will use these
locations between successive calls to your routine.

NARG2 through NARG2 + 3 contain the second input to .CALL, stored as a four-byte
fixnum in two's complement form. Thus .CALL HEX "0C40 3 would result in the
following values in memory:

NARG2 NARG2+1 NARG2+2 NARG2+3
3 0 0 0

NARG1 NARG1+1 NARG1+2 NARG1+3
$40 $0C 0 0

Commodore 64 Logo Tutorial A-127

Appendix: Reference Guide

Substituting - 1 for 3 would make NARG2 through NARG2 + 3 contain $FF.

To output an integer, store the integer to be returned (using the above format) in the four
locations with NARG2 through NARG2 + 3, and jump to location OTPFX2. If the
number is stored in some other set of 4 consecutive page-zero variables (such as
NARG1), load Y with the address and jump to OTPFIX. To output no value, simply end
the routine with an RTS instruction.

When a machine language routine has encountered some error condition that would make
it inappropriate to return to the Logo procedure that called it, it should jump to PPTTP,
which effectively executes the Logo TOPLEVEL primitive.

Here is a simple example which prints "HI" on the screen, using the Logo-supplied
character output routine. The code here is written in standard 6502 assembler format. To
use it you will have to assemble it by hand and deposit the instructions in memory (but
see section 3.3 below).

ORG $0C40
TPCHR EQU <see ADDRESSES file>
HI: LDA #’H {as published, should it be “ or ’?}

JSR TPCHR
LDA #’I
JSR TPCHR
LDA #$0D
JSR TPCHR
RTS
END

Now you can set the Logo variable HI to the address of the label HI and execute this new
"primitive" by typing

CALL :HI 0

Note that an input is needed, even though it is ignored.

3.3 The Logo Assembler

The Logo assembler is a 6502 assembler that is written in Logo. The assembler is stored
on the Logo utilities disk in the file ASSEMBLER. (The ASSEMBLER program in turn
reads data stored on the Logo disk in auxiliary files AMODES and OPCODES.) To use
the assembler, simply read this file into Logo as you would any normal Logo file. It is
"self starting", which means it initializes itself via the magic variable :STARTUP as
described in the paragraph on Self Starting Files in the Miscellaneous Information
section.

READ “ASSEMBLER

Write the routine you wish to assemble in the format of a Logo procedure, using the Logo
editor. For example, the example above would be written as the procedure:

A-128 Commodore 64 Logo Tutorial

Appendix: Reference Guide

TO HI.CODE
HI: LDA # “H

JSR TPCHR
LDA # “I
JSR TPCHR
LDA # [$ “0D]
JSR TPCHR
RTS

END

Notice that there are differences in syntax between the input accepted by the Logo
assembler and the standard 6502 assembler. The syntax of code for the assembler is
explained in section 3.3.1.

Once you have defined the procedure you may now assemble it by typing

READ “ADDRESSES

ASSEMBLE “HI.CODE

ASSEMBLE will now assemble the instructions and place them in the default location
($0C40, but you can change it by changing the value of the Logo variable ORG). Any
labels in the code (such as HI, above) will now be defined as Logo symbols. To call the
routine, type

CALL :HI 0

3.3.1 Syntax of Input to the Assembler

In order to take advantage of some aspects of the Logo language, the Logo assembler
uses a format slightly different from most assemblers. Each assembly-language program
is stored as a Logo procedure, although this procedure cannot be executed directly. The
following paragraphs concisely describe the Logo assembler format; a study of the
examples provided will better explain how to write assembly language programs to
interface with Logo.

• Labels within the program are indicated by a postfixed colon. Example: LOOP: CMP #
0

• References to page-zero memory locations (other than indirect-indexed and indexed-
indirect) must have an exclamation point ("!") before the label or expression that is on
page zero. If you forget the exclamation point, the instruction will be coded as absolute
references, and will occupy one more byte. Examples:

LDA ! NARG2
STA ! TABLE ,X

• Immediate mode references are standard, using the # character. Example:

LDA # TABLE.LENGTH

Commodore 64 Logo Tutorial A-129

Appendix: Reference Guide

• There must be a space following every exclamation point and number sign ("#"), and
after every label or reference to a label. Spaces around parentheses and brackets are
supplied automatically by Logo. In the indexed instructions ",X" and ",Y" are to be
written without spaces.

• The operand of an instruction may be a word (a reference to a label), a number, a list, or
a single-letter word beginning with a quote. If the latter case, the operand is the ASCII
value of the letter.

• Anything inside a list is evaluated as a regular Logo expression. If the list is the first
thing on the line, it is not allowed to output a value, and is evaluated for "side-effect"
(label assignment, PRINTing, etc.) only. If it is an operand (follows the name of an
instruction), it is expected to output something. Thus, arithmetic expressions such
as :F00+3, where FOO is a label or regular Logo symbol, may be used provided they are
enclosed in square brackets. Since the contents of the bracketed list is not processed by
the assembler, but rather by Logo, references to the values of labels inside square
brackets must have dots (:) before them, spaces have their normal significance, and in
general all normal Logo rules must be followed.

• All labels are Logo variables. DOT is a Logo variable whose value is the current
location being assembled. The HIS and L08 procedures, which return respectively the
high and low eight bits of a number, are also useful inside lists. Use them like this:

LDA # [LO8 :SOURCE]
STA ! DEST
LDA # [HI8 SOURCE]
STA ! [:DEST + 1]

The $ Logo procedure defined in the assembler file takes as input a word that is a
hexadecimal number and outputs the number that it represents. Thus, hex numbers may
be included in programs by placing a call to the $ inside a list (see the example in section
3.3.) Use the MAKE primitive to assign values to labels.

If you use octal or binary numbers a lot, you might want to change the value of the Logo
word $BASE. This is the base used by the $ procedure. Changing it to 2 gives you binary,
and so on. You can do this within the source for an assembly language program with
[MAKE "$BASE 2].

You can assemble arbitrary bytes into code by placing the number on the line with
nothing (except perhaps a label) preceding it. Example:

BIT.TABLE: 1
2
4
8

If you try to assemble long programs, you may run out of memory. One way to get more
memory is to load in only those instructions that your program uses. In a fresh Logo, read
in the OPCODES file from the utilities disk and erase the instructions (using ERNAME
"BIT, for example) that you don't

A-130 Commodore 64 Logo Tutorial

Appendix: Reference Guide

plan to use. Then, rewrite this as the new OPCODES file. Of course, you should not do
this on the original Logo disk. Save copies of the original assembler files on an ordinary
Logo file disk and run the assembler using these copies.

3.3.2 Saving Assembled Routines on Disk

With the BSAVE primitive, you can save the actual machine code that the assembler
generates. BSAVE takes three inputs: the file name, the start address, and the end
address. The following will save the entire machine-language area in a file called
ROUTINES.

BSAVE "ROUTINES.BIN $ "0C40 $ "0DFF

A better idea would be to save only the region of memory containing your program.
Immediately after assembling a routine, the Logo variable :ORG contains the first
address it occupies, and the variable :END contains the last. So, an optimal disk save
would be

BSAVE "ROUTINES.BIN :ORG :END + 1

To load the routines into Logo, type

BLOAD "ROUTINES.BIN

The BIN is short for BINARY, and might help you remember that the file is a saved
machinelanguage file. Keep in mind that in addition to saving the actual machine code,
you should save the Logo variables that define the addresses used by .CALL. The easiest
way to do this is to type EDIT NAMES, and put a TO INIT at the beginning of the edit
buffer. Use the editing keys to move down to the last name associated with your routine,
put on the next two lines

BLOAD “ROUTINES
END

Then type CTRL-C and type

(SAVE “ROUTINES [INIT])

Later, to reload your routine, type READ "ROUTINES and type INIT.

3.4 Example: Changing Colors

This section presents an example of an assembly language extension to Logo.

The Commodore 64 uses a clever mechanism to allow high resolution graphics in 16
colors. If each of the 64000 (320*200) points on the screen (pixels) were able to be in any
of the 16 colors independently, there would have to be 32000 bytes of memory devoted
just for the colors! That wouldn't leave much room for programs. So, in SINGLECOLOR
mode the Commodore 64 groups pixels into 8 x 8 blocks and allows each block to have
only one color. This reduces the memory requirement by a factor of 64 (8*8), to 500
bytes. In actuality, it's stored as 1000 bytes, with only four bits of each byte in use. (In
multicolor mode, all eight bits are used.)

Commodore 64 Logo Tutorial A-131

Appendix: Reference Guide

All the information about the colors of lines and points on the screen is stored in this
1000 byte area, located at $0800. We can take advantage of this fact and write a
procedure which changes the color of designs after they've been drawn. Let's write a
procedure to change all the lines of color :OLD to color :NEW. The idea is to go through
each of the 1000 bytes and check the lower and upper nybbles (four bits) against the old
color, changing it to the new color if necessary. Below is a simplified version of this
algorithm. It checks only the upper nybble, and so works only in SINGLECOLOR mode.

TO ALTER.COLOR :OLD :NEW
ALTER.NYBBLES :OLD :NEW 2048 2048+1000

END

TO ALTER.NYBBLES :OLD :NEW :START :END
IF :START>:END STOP
IF UPPER.EQUAL? :OLD .EXAMINE :ADDR

UPPER.CHANGE :NEW :ADDR
ALTER.NYBBLES :OLD :NEW :START + 1 :END

END

TO UPPER.EQUAL? :NYBBLE :BYTE
OP :NYBBLE=QUOTIENT :BYTE 16

END

TO UPPER.CHANGE :VALUE :LOC
.DEPOSIT :LOC

(BITOR :VALUE*16 (BITAND .EXAMINE :LOC 15))
END

Although these procedures work, they are impractical since execution takes about one
minute. A machine language implementation of the same algorithm would be much
faster. Here is an implementation of the routine in 6502 assembly language, in the Logo
assembler format. Additionally, it works in DOUBLECOLOR mode by checking the
location COLMOD (which tells which color mode Logo is in) and altering the lower
nybble if necessary.

TO CODE
[MAKE "COLORS $ “0800]
[MAKE "PTREND :COLORS + 1000]
[MAKE "OCOLOR :NARG2]
[MAKE "NCOLOR :NARG2 + 1]
[MAKE "OCOLOR.H :NARG2 + 2]
[MAKE "NCOLOR.H :NARG2 + 3]
[MAKE "PTR :FREEPZ]
CCHANGE: LDA # [LO8 :COLORS]

STA ! PTR
LDA # [HI8 :COLORS]

A-132 Commodore 64 Logo Tutorial

Appendix: Reference Guide

STA ! [:PTR + 1]
LDA ! OCOLOR
ASL A
ASL A
ASL A
ASL A
STA ! OCOLOR.H
LDA ! NCOLOR
ASL A
ASL A
ASL A
ASL A
STA ! NCOLOR.H

LOOP: LDY # 0
LDA (PTR) ,Y
AND # [$ “0F]
CMP ! OCOLOR
BNE CHKHI
JSR DOLOW

CHKHI: LDA (PTR) ,Y

AND # [$ "F0]
CMP ! OCOLOR.H
BNE NXLOOP
JSR DOHI

NXLOOP: INC ! PTR
BNE NXL1
INC [:PTR + 1]

NXL1: LDA [:PTR + 1]
CMP # [H18 :PTREND]
BNE LOOP
LDA PTR
CMP # [LO8 :PTREND]
BNE LOOP
RTS

DOHI: LDA (PTR) ,Y
AND # [$ "0F]
ORA ! NCOLOR.H
STA (PTR) ,Y
RTS

DOLOW: LDA COLMOD
BEQ DRTS
LDA (PTR) ,Y

Commodore 64 Logo Tutorial A-133

Appendix: Reference Guide

AND # [$ “F0]
ORA ! NCOLOR
STA (FIR) ,Y

DRTS: RTS

Some method of interfacing the machine-language routine to Logo is needed. The .CALL
primitive is provided for just this purpose, but allows passing only one input. What we
need is a way to pass both the old color (OCOLOR) and the new color (NCOLOR). Since
we arranged memory locations so that OCOLOR is the low byte of the second input
to .CALL, and NCOLOR the next byte, the following procedure will give the two inputs
to machine-language routines:

TO .CALL.2 :ADDR :INPUT1 :INPUT2
.CALL :ADDR :INPUT1 + :INPUT2*256

END

If there were many inputs needed, it would be better to .DEPOSIT them in memory
locations reserved by your assembly program before calling the routine. Below is the new
ALTER.COLOR procedure, which uses the assembly-language program above, together
with the .CALL.2 procedure:

TO CCHANGE :OLD :NEW
.CALL.2 3136 :OLD :NEW

END

The Utilities Disk contains three files pertaining to the CCHANGE routine. One is the
source for the assembly-language program, and the other is the saved machine-language
code. The last is the Logo procedure above together with startup information. To try out
the routine, type

READ “CCHANGE

Once in DRAW mode (SINGLECOLOR or DOUBLECOLOR), to change all the red
items to green, type

CCHANGE 2 5

You can get interesting effects by drawing "invisible" objects in same pencolor as the
background color, and then issuing a CCHANGE command to change all background
colored objects to some other color, making them instantly appear.

3.5 Useful Memory Addresses

This section contains brief descriptions of addresses in the Logo program for interfacing
assembly language programs to Logo as described in section 3.2. The actual values of the
addresses are contained in a file called ADDRESSES that is included on the Logo
utilities disk. Beware that the actual values of these addresses may change with new
releases of Logo. Executing READ "ADDRESSES in Logo will define the addresses as
normal Logo variables whose values are

A-134 Commodore 64 Logo Tutorial

Appendix: Reference Guide

integers. When using an address in a Logo procedure, it should be preceded with the
character : (dots) as in .EXAMINE :EPOINT. In the assembler, you may refer to the
variable as a label without the dots, but inside a list of commands to execute the dots
must be present.

Page zero locations:

NARG2 Second input to .CALL. 4 bytes. See section 3.2.

FREEPZ First user-available page zero location. All memory from here to
FREEPZ+32 is available for user assembly-language routines. These locations are for
temporary use only, and will not be saved between .CALLs. See section 3.2.

Vectors and Flags

TOPIRQ This vector normally points to the Logo internal routine which is executed
every 60th of a second while the raster scan is at line 16. You may insert the address of
your own interrupt handling routine here, provided it exits by jumping to the address
formerly specified by TOPIRQ.

KERVER This location is initialized to a copy of the Commodore Kernel version
number byte, located in Kernel ROM at location $FF80. If this location contains $64,
then Logo will operate in "black and white" mode. The B&W file on the Utilities Disk
uses this feature.

COLMOD This location contains 0 in SINGLECOLOR mode and 1 in DOUBLE-
COLOR mode. Depositing in this location will produce strange visual effects. It is
documented for the use of the CCHANGE assembly language example.

VERSION This location contains the version number of the Logo currently running.
Each new release of Logo will have a different version number.

RPTFLG If this location contains 0 (normally), only selected cursor motion keys will
repeat if held down. Depositing 128 will cause all keys to repeat, and depositing 255 will
disallow all repeating keys. Note that the SHIFT/ COMMODORE combination to enter
upper-/lowercase display mode is difficult to type in all-keys-repeat mode; use PRINT1
CHAR 14 and PRINT1 CHAR 142 instead.

Routines and Entry/Exit Points

OTPFX2 jumping to this address will cause the .CALL to output the integer stored
in NARG2 through NARG2+3. See section 3.2.

Commodore 64 Logo Tutorial A-135

Appendix: Reference Guide

OTPFIX Like OTPFX2, but returns to Logo with the integer value stored in the four
successive bytes starting with the page-zero location pointed to by the Y register.

PPTTP An alternate exit for user machine-language routines. Jumping to this
address runs the Logo primitive TOPLEVEL (section 4.7). It is useful to return to Logo
in this manner when some error condition has occurred, making it inappropriate to
continue executing .CALLing procedure.

COUT Logo's normal screen character-output routine. Prints the character in the
accumulator on the screen.

A-136 Commodore 64 Logo Tutorial

Appendix: Reference Guide

4. Logo System Primitives Glossary

Logo is a full-scale, powerful computer language. It includes commands for graphics,
arithmetic and logical operations and list processing. It also incorporates a real-time
screen editor that can be used both for editing command lines as they are typed, for
editing procedure definitions, or for text editing.

Following is a list of sections and the commands within each section.

Graphics Commands
BACK BK
BACKGROUND BG
CLEARSCREEN CS
DOUBLECOLOR
DRAW
DRAWSTATE
FORWARD FD
FULLSCREEN <f5>
HEADING
HIDETURTLE HT
HOME
LEFT LT
NODRAW ND
NOWRAP
PENCOLOR PC
PENDOWN PD
PENUP PU
RIGHT RT
SETHEADING SETH
SETSHAPE
SETX
SETXY

SETY
SHAPE
SHOWTURTLE ST
SINGLECOLOR
SPLITSCREEN <f3>
STAMPCHAR
TELL
TEXTBG
TEXTCOLOR
TEXTSCREEN <fl>
TOWARDS
WHO
WRAP
XCOR
YCOR

Numeric Operations
+
-
=
/
>
<
ATAN
BITAND
BITFOR
BITXOR
COS
INTEGER
NUMBER?
QUOTIENT
RANDOM
RANDOMIZE
REMAINDER
ROUND
SIN
SQRT

Commodore 64 Logo Tutorial A-137

Appendix: Reference Guide

Word and List Operations
=

BUTFIRST BF
BUTLAST BL
COUNT
EMPTY?
FIRST
FPUT
ITEM
LAST
LIST
LIST?
LPUT
MEMBER?
SENTENCE SE
WORD
WORD?

Defining and Editing Procedures
DEFINE
EDIT ED
END
ERASE ER
TEXT
TO

Naming
LOCAL
MAKE
THING
THING?
ALLOF
ANYOF
ELSE
IF
IFFALSE IFF
IFTRUE IFT
NOT
TEST
THEN

Debugging
CONTINUE CO
PAUSE
NOTRACE
TRACE

Input and Output

.CTYO
ASCII
CHAR
CLEARTEXT
CLEARINPUT
CURSOR
CURSORPOS
FPRINT
JOYSTICK
JOYBUTTON
NOPRINTER
PADDLE
PADDLEBUTTON
PRINT PR
PRINT1
PRINTER
RC?
READCHARACTER RC
REQUEST RQ
SETDISK

Filing and Managing Workspace
BLOAD
BSAVE
CATALOG
DOS
ERASEFILE
ERASEPICT
ERNAME
PRINTOUT PO
POTS
READ
READPICT
SAVE
SAVEPICT

Control
GO
GOODBYE
OUTPUT OP
REPEAT
RUN
STOP
TOPLEVEL

A-138 Commodore 64 Logo Tutorial

Appendix: Reference Guide

Miscellaneous Commands
.ASPECT
.CALL
.CONTENTS
.DEPOSIT
.EXAMINE
.GCOLL
.NODES
.OPTION
.SPRINT
;

4.1 Graphics Commands
BACK Moves the turtle in the opposite direction from which it is pointing
by the amount specified, drawing in the current pencolor (or erasing). Abbreviated: BK.

BACKGROUND Takes a number 0 through 15 as input and sets the color of the
graphics screen background as described in section 1.4. To find out the current
background color, use ITEM 3 DRAWSTATE. Abbreviated: BG.

CLEARSCREEN Clears the graphics screen without moving the turtle from its
current position. Abbreviated: CS.

DOUBLECOLOR Allows two colors per 8 x 8 pixel region, instead of just one. The
resulting colors are much richer and easier to see than in SINGLECOLOR (the default)
mode, but drawings will look less precise because lines are thicker horizontally. All
sixteen colors can be used. Since the horizontal resolution is one half that of
SINGLECOLOR mode, STAMPCHAR graphics will not be legible in DOUBLECOLOR
mode. Executing DOUBLECOLOR will cause all graphics parameters to be reset to de-
fault.

DRAW Clears the turtle graphics screen and enters DRAW mode in
background 11 (grey) and pencolor 1 (white) with wrapping allowed (See WRAP,
NOWRAP.) If Logo is already in DRAW mode, then it clears the graphics screen, homes
the turtle to the center of the screen, shows the turtle, and puts the pen down. It does not
change the background or pen color. To change the default background or pen color, see
the .OPTION command in the Miscellaneous Commands section below. Use ITEM 6
DRAWSTATE to find out whether Logo is in DRAW mode or NODRAW mode.

DRAWSTATE Takes no inputs. Outputs a list of nine items giving information
about the state of the turtle and the graphics screen. You can use the ITEM primitive (or

FIRST, LAST, BUTFIRST, etc.) to access the information in this list. Here is a typical
output:

Commodore 64 Logo Tutorial A-139

Appendix: Reference Guide

[TRUE TRUE 11 1 DRAW SINGLECOLOR SPLITSCREEN 14 6]

ITEM 1 TRUE if the pen is down, FALSE if it is up.

ITEM 2 RUE if the turtle is shown, FALSE if it is hidden.

ITEM 3 Background color, 0...15.

ITEM 4 Pen color 0...15, or -1 for PENERASE.

ITEM 5 Screen mode, NODRAW or DRAW

ITEM 6 Color mode, SINGLECOLOR or DOUBLECOLOR.

ITEM 7 TEXTSCREEN, FULLSCREEN or SPLITSCREEN

ITEM 8 Text background color (TEXTBG).

ITEM 9 Color of text characters (TEXTCOLOR)

FORWARD Moves the turtle in the direction in which it is pointing by the
amount specified. If the pen is down, the turtle leaves a trail. (Or erases, with
PENERASE.) Abbreviated: FD.

FULLSCREEN In graphics mode, gives full graphics screen. Complementary to
SPLITSCREEN. Equivalent to the function key F5. Use ITEM 7 DRAWSTATE to find
out the current screen mode. See the Miscellaneous Commands section below for
the .OPTION which applies to FULLSCREEN.

HEADING Outputs the turtle's heading as a decimal number. The heading
ranges from 0 to less than 360. When the turtle has a heading of 0 it is pointing straight
up.

HIDETURTLE Makes the turtle disappear. Does not affect drawing. Abbreviated:
HT.

HOME Moves the turtle to the center of the screen, pointing straight up.
Note that if the pen is down the turtle will draw a line.

LEFT Rotates the turtle. Takes an input that specifies the number of
degrees to rotate. Zero, negative, and fractional inputs are allowed. Abbreviated: LT.

NODRAW Exits graphics mode, giving a clear text page with the cursor
homed in the upper left-hand corner of the screen. DRAW will return to draw mode with
a clear turtle graphics screen. To view the full text screen temporarily without erasing
your drawing, use function key Fl or the

A-140 Commodore 64 Logo Tutorial

Appendix: Reference Guide

TEXTSCREEN command. Use ITEM 6 DRAWSTATE to find out the current screen
mode. Abbreviated: ND.

NOWRAP Exits wrapping mode. Any command that would normally cause
the turtle to move off one edge of the screen and onto the opposite edge instead results in
an error. Logo remains in NOWRAP mode until the next WRAP or NODRAW
command. DOUBLECOLOR and SINGLECOLOR reset wrapping to WRAP.

PENCOLOR Takes a number from - 1 through 15 and sets the color of the lines
that the turtle will draw as described in section 1.4. See also PENERASE which is equal
to a color of -L To find out the pencolor, use ITEM 4 DRAWSTATE. Abbreviated: PC.

PENDOWN Causes the turtle to leave a trail in the current pen color when it
moves. This is the default state, and is changed by PENUP. Abbreviated: PD.

PENUP Causes the turtle to move without leaving a trail or erasing.
Abbreviated: PU.

RIGHT Rotates the turtle. Takes an input that specifies the number of
degrees to rotate. Abbreviated: RT.

SETHEADING Rotates the turtle to the direction specified. Input determines
number of degrees. Zero is straight up, with heading increasing clockwise. Abbreviated:
SETH.

SETSHAPE Takes a number 0-7 as input and sets the current sprite's shape to
be the shape with that number. Normally sprite 1 has shape 1, sprite 2 has shape 2, etc.
Only sprite 0 (the main turtle) can carry the rotating turtle shape, shape 0. See SHAPE.

SETX Moves the turtle horizontally to the specified coordinate, drawing a
line if the pen is down.

SETXY Takes two numeric inputs. Moves the turtle to the specified point.
0,0 is screen center. As with all primitives or procedures of two or more inputs, when the
second input (y-coordinate) is a negative number typed in directly, it must be enclosed by
parenthesis.

SETY Moves the turtle vertically to the specified coordinate, drawing a
line if the pen is down.

SHAPE Outputs the shape number of the current sprite. Shape 0 is stored at
VIC sprite location 48, so to find the actual address of a sprite bitmap, use 64*(SHAPE +
48). See SETSHAPE.

Commodore 64 Logo Tutorial A-141

Appendix: Reference Guide

SHOWTURTLE Makes the turtle appear. This is the default state, and is changed by
HIDETURTLE. Abbreviated: ST.

SINGLECOLOR Allows the turtle to draw in only one color per 8 x 8 pixel region.
If you draw over a line in a different color, a small section of the line will change color.
A1116 colors can be used. Lines drawn in SINGLECOLOR mode are more precise, but
the colors are harder to see than in DOUBLECOLOR mode. SINGLECOLOR is the
default mode, remaining in effect until a DOUBLECOLOR command is executed.
STAMPCHAR works best in SINGLECOLOR mode. Executing SINGLECOLOR will
clear the screen and restore all graphics parameters to default. See DOUBLECOLOR.

SPLITSCREEN In graphics mode, gives mixed text/graphics screen, which is the
default state. Complementary to FULLSCREEN. Equivalent to function key F3.
SPLITSCREEN can take an optional argument specifying how many lines of text to
show. Normally five lines of text are shown. To change the lines of text, use the
following format: (SPLITSCREEN 10). Parentheses must be used when an input is used
with this command. The number of lines of text will remain the same until the number is
changed with SPLITSCREEN. The number can be from 0 to 24. Use ITEM 7
DRAWSTATE to find out the current screen mode.

STAMPCHAR Takes one input, a word containing one letter. Makes the turtle
stamp the appearance of that character at its current location in the current pencolor.
STAMPCHAR has several .OPTIONs. See .OPTION under Miscellaneous Commands at
the end of this section.

TELL Takes one input, a number 0-7, and tells that sprite to receive all
graphics commands until the next TELL command. Sprite 0 is the default, and normally
has the rotating turtle shape. By default, sprites other than 0 are hidden (see
HIDETURTLE/SHOWTURTLE) and have pens up (see PENUP/PENDOWN). See
WHO.

TEXTBG Takes one input which specifies a new default color for the text
screen in the draw and nodraw modes. The change remains in effect until the next
TEXTBG command. To find out the current text background color, use ITEM 8
DRAWSTATE. See the section on .OPTION to find out how to change the procedure
editor background color. (Note that there is no long name for this command.)

TEXTCOLOR Takes one input which specifies a new default color for printing
characters to the screen. This command does not affect STAMPCHAR; PENCOLOR
must be used instead. Use ITEM 9 DRAWSTATE to find out the current color used for
printing characters. See the section on .OPTION to find out how to change the procedure
editor character color.

A-142 Commodore 64 Logo Tutorial

Appendix: Reference Guide

TEXTSCREEN In graphics mode, gives full text screen. See SPLITSCREEN,
FULLSCREEN. Equivalent to the function key Fl. Use ITEM 7 DRAWSTATE to find
out the current screen mode. TEXTSCREEN has one .OPTION. For a description, see the
Miscellaneous Commands at the end of this section.

TOWARDS Takes two numbers as inputs. These are interpreted as the x and y
coordinates of the point on the screen. TOWARDS outputs the heading from the turtle to
the point. That is, SETHEADING TOWARDS :X :Y will make the turtle face towards
point x,y. Compare with ATAN.

WHO Outputs the last input given to TELL. All graphics commands are
directed to the sprite with this number. When Logo starts up, sprite 0 carrying the rotating
turtle shape is the current receiver of graphics commands.

WRAP Places the graphics system in wrapping mode. Any time the turtle
moves off the edge of the screen, it reappears at the opposite edge. Wrap mode is the
default, and is exited only by the NOWRAP command.

XCOR Outputs the turtle's x-coordinate as a decimal number.

YCOR Outputs the turtle's y-coordinate as a decimal number.

4.2 Numeric Operations

+ Addition

- Subtraction (two inputs) and negation (one input). Note that
negative numbers typed in directly must sometimes have parentheses around them. For
example,

SETXY 50 -30

will be treated by Logo as SETXY 20, since 20 is 50-30. To get the correct behavior with
procedures or primitives of two or more inputs, use one of the following:

SETXY 50 (-30)
SETXY 50 0-30

* Multiplication

/ Division (always outputs a decimal value).

> Outputs TRUE if its first input is greater than its second, FALSE
otherwise.

Commodore 64 Logo Tutorial A-143

Appendix:Reference Guide

< Outputs TRUE if its first input is less than its second, FALSE
otherwise.

ATAN Takes two inputs and then outputs (in degrees) the arctangent of
the quotient. The output ranges from 0 to less than 360, with the quadrant corresponding
to the signs of the two inputs. If the second input is negative, it must be enclosed by
parentheses.

BITAND Takes two inputs, both integers, and outputs their boolean AND.
For example, BITAND :N 7 gives the three least significant bits of N.

BITOR Takes two inputs, both integers, and outputs their boolean OR.
BITOR 5 9, for example, outputs 12.

BITXOR Takes two inputs, both integers, and outputs their boolean
eXclusive OR. BITXOR 65535:N will invert the bottom 16 bits of N. BITXOR -1 :N will
invert all 32 bits of N.

COS Outputs the cosine of its input (an angle in degrees).

INTEGER Takes one numeric input and outputs the integer part, ignoring the
fractional part.

NUMBER? Outputs TRUE if its input is a number. See also WORD? and
LIST?.

QUOTIENT Outputs the integer quotient of its two inputs. If the inputs are not
integers, it first rounds them to the nearest integer. (Note that if the second input is
preceded by a minus sign it must be enclosed by parentheses.)

RANDOM Takes one input - a positive integer n - and outputs an integer
between 0 and n - 1. Identical sequences of calls to RANDOM will yield repeatable
sequences of random numbers each time Logo is restarted unless the seed for the random
number generator is RANDOMIZEd.

RANDOMIZE Randomizes the seed for RANDOM. If given an explicit input, sets
the random number seed to that number. For example, after each execution of
(RANDOMIZE 259) the same sequence of random numbers will be generated. Different
numbers result in different sequences. Note that () are needed around RANDOMIZE if an
input is used, such as (RANDOMIZE 259) above.

REMAINDER Outputs the integer remainder of its first input divided by its
second. (If the inputs are not integers, it first rounds them to the nearest integer. Note that
if the second input is preceded by a minus sign, it must be enclosed by parentheses.)

ROUND Outputs the nearest integer to its input.

A-144 Commodore 64 Logo Tutorial

Appendix: Reference Guide

SIN Outputs the sine of its input (an angle in degrees).

SQRT Takes a positive number as input and outputs the square root of
that number.

4.3 Word and List Operations

= If both inputs are numbers, compares them to see if they are
numerically equal. If both inputs are words, compares them to see if they are identical
character strings. (Note that a quoted word must have a space before the =.) If both inputs

are lists, compares them to see if their corresponding elements are equal. Outputs TRUE
or FALSE accordingly.

BUTFIRST If the input is a list, outputs a list containing all but the first
element. If the input is a word, outputs a word containing all but the first character. Note
that numbers are kinds of Logo words. Abbreviation: BF. Gives an error when called
with the empty word or the empty list.

BUTLAST If input is a list, outputs a list containing all but the last element. If
input is a word, outputs a word containing all but the last character. Note that numbers
are kinds of Logo words. Abbreviation: BL. Gives an error when called with the empty
word or the empty list.

COUNT Takes one input. If the input is a word (or number), COUNT
outputs the number of characters it contains. If the input is a list, COUNT outputs the
number of elements in the list. Note that COUNT counts only the top-level elements of a
list. Any list inside the list being counted is regarded only as one element. COUNT could
have been written as the following procedure:

TO COUNT :THING
IF EMPTY? :THING OUTPUT 0
OUTPUT 1 + COUNT BUTFIRST :THING

END

EMPTY? Takes one input and outputs TRUE if the input is the empty word
(") or the empty list ([]). It outputs FALSE otherwise. EMPTY? could have been written
as the following procedure:

TO EMPTY? THING
OUTPUT ANYOF :THING=[]:THING=”

END

FIRST If input is a list, outputs the first element. If input is a word,
outputs the first character. Note that numbers are kinds of Logo words. Gives an error
when called with the empty word or the empty list.

Commodore 64 Logo Tutorial A-145

Appendix: Reference Guide

FPUT Takes two inputs. Second input must be a list. Outputs a list
consisting of the first input followed by the elements of the second input. If the first input
is a list, for example FPUT [A B] [C D], the result will be [[A B] C D]. Note that FPUT
is the complementary operation to FIRST and BUTFIRST. FIRST FPUT :A :B will

output :A, and BUTFIRST FPUT :A :B will output :B. See also LPUT, LIST, and
SENTENCE.

ITEM Takes two inputs, a number and a word or list, and outputs the Nth
element of the list. N is the number given as the first input. For instance, ITEM 1 outputs
the first item of a list or the first character of a word specified as the second input to
ITEM. An error will occur if the list or word is too short. ITEM could be written as the
following procedure.

TO ITEM :N :STUFF
IF EMPTY? :STUFF PR [TOO FEW ITEMS]

TOPLEVEL
IF :N=1 OUTPUT FIRST :STUFF
OUTPUT ITEM :N-1 BUTFIRST :STUFF

END

Following are two procedures suggesting a way to use ITEM.

TO PICKRANDOM :STUFF
OUTPUT ITEM (1 + RANDOM COUNT :STUFF)

:STUFF
END

TO CLOSING
OUTPUT PICKRANDOM [[SINCERELY

YOURS] [YOURS TRULY]
[YOUR HUMBLE SERVANT]
[CORDIALLY]]

END

LAST If input is a list outputs the last element. If input is a word, outputs
the last character. Note that numbers are kinds of Logo words. Gives an error when called
with the empty word or the empty list.

LIST Takes a variable number of inputs (two by default) and outputs a
list of the inputs. If the first and second inputs are lists, for example LIST [A B] [C D],
the result will be [[A B] [C D]]. See also FPUT, LPUT, and SENTENCE. If there are
more than two inputs, there must be an opening parenthesis before LIST, and a closing
parenthesis after the last input.

LIST? Outputs TRUE if its input is a list. See also WORD? and
NUMBER?.

LPUT Takes two inputs. Second input must be a list. Outputs a list
consisting of the elements of the second input followed by the first input. If the first input

is a list, for example LPUT [A B] [C D], the result will be [C D [A B]]. See also FPUT,
LIST, and SENTENCE.

A-146 Commodore 64 Logo Tutorial

Appendix: Reference Guide

MEMBER? Takes two inputs which may be words or lists. MEMBER? is a
predicate (meaning that it returns TRUE or FALSE) telling whether the first input is
present in the second input. If the second input is a word, the first input must be a single
character word or an error will result. MEMBER? will output TRUE if the single
character is contained in the word, and FALSE if it is not. If the second input is a list,
MEMBER? will output TRUE if the first input is equal to an element of that list.
MEMBER? (without the error checking) could have been defined as the following
procedure.

TO MEMBER? :THING :PLACE
IF EMPTY? :PLACE OUTPUT “FALSE
IF :THING = FIRST :PLACE OUTPUT “TRUE
OUTPUT MEMBER? :THING BUTFIRST

:PLACE
END

Example:

MEMBER? 3 12345
RESULT: TRUE

MEMBER? “. 3/2
RESULT: TRUE

MEMBER? "ALEC [DORIS MARK SEAN RUTH]
RESULT: FALSE

MEMBER? [HI] [[BYE] [PIE] [SLY] 5 MY [HI]]
RESULT: TRUE

SENTENCE Variable number of inputs (default 2). If inputs are all lists,
combines all their elements into a single list. If any inputs are words (or numbers), they
are regarded as one-word lists in performing this operation. Therefore, if the first and
second inputs are lists, for example SENTENCE [A B] [C D], the result will be [A B C
D]. If there are more than two inputs, there must be an opening parenthesis before
SENTENCE, and a space and closing parenthesis after the last input. See also FPUT,
LPUT, and LIST. Abbreviated: SE.

WORD Variable number of inputs (default is 2). Outputs a word that is the
concatenation of the characters of its inputs (which must be words). If there are more than

two inputs, there must be an opening parenthesis before WORD, and a closing
parenthesis after the last input. (Note that quoted words must be followed by a space, so
you must put a space before the final close parenthesis if the last input is a quoted word.)

WORD? Outputs TRUE if its input is a word. Since numbers are treated as
words, the result will also be TRUE for a number. See also LIST? and NUMBER?.

Commodore 64 Logo Tutorial A-147

Appendix:Reference Guide

4.4 Defining and Editing Procedures

DEFINE Takes two inputs. First is a name, second is a list. Each element of
this list must be a list itself. The first element of the list is a list of inputs to the procedure.
(If there are no inputs to the procedure, the first element should be the empty list.) Each
subsequent element is a list corresponding to one line of the procedure being defined. For
example, DEFINE "TRIANGLE [[:SIZE] [REPEAT 3 [FD :SIZE RT 120]]]. Due to
limitations of the DEFINE command, each sublist in the second input (each procedure
line) must be less than 255 characters long. This does not apply to procedures defined
with the editor. See TEXT. Note that one normally uses TO rather than DEFINE in order
to define procedures.

EDIT Enters edit mode. If a procedure name is included as an input, that
procedure will be in the editor. If no input is specified, enters edit mode with the previous
contents of the screen editor buffer, or the most recently defined (or PO'd) procedure if
the previous contents are unretrievable. If EDIT is followed by a list of procedures, the
procedures in the list will all be available in edit mode. Example: EDIT [SQ TRI BOX]
Note that since EDIT does not evaluate its input, a list that is input to EDIT as the value
of a variable must be typed as RUN LIST "EDIT :LISTNAME. Edit can also take
auxiliary words: ALL, NAMES, PROCEDURES. See section 1.2.2 for a description of
keystroke commands inside the editor. Abbreviated: ED.

END Terminates a procedure definition that is typed in to the editor. It is
not necessary to type END at the end of the final definition. But if you are defining more
than one procedure at a time, the separate procedure definitions must be separated by
END statements. To actually exit the editor, you must type CTRL-C. Do not include
END in arguments to the DEFINE primitive.

ERASE Erases designated procedure from workspace. Can also take
qualifiers ALL, NAMES, PROCEDURES. Signals an error if there is no procedure with
the given name. To keep you from accidently {sic} running a procedure you intended to
erase, the input to erase is not evaluated; to erase a procedure called LOOKUP, type
ERASE LOOKUP, not ERASE "LOOKUP. Abbreviated: ER. ERASE can take a list of

procedures to erase as input, such as ERASE [SQ TRI]. To erase a list which is a
variable, use RUN LIST "ERASE :LISTNAME.

TEXT Takes a procedure name as input and outputs procedure text as a
list. The procedure name must start with " or Logo will run the procedure. If the
procedure has not been defined, TEXT outputs []. If instead the input is the name of a
Logo primitive, it outputs the primitive's name (i.e., the input). See DEFINE.

A-148 Commodore 64 Logo Tutorial

Appendix: Reference Guide

TO Begins procedure definition. Takes a variable number of inputs.
Enters edit mode with the procedure named by the first input. Any following inputs are
taken as inputs to the procedure named by the first input. With no inputs at all, TO enters
edit mode with an empty edit buffer.

4.5 Naming

LOCAL LOCAL takes the name of a variable (a word) as input and makes
the variable be local to the current procedure. If the procedure FOO executes LOCAL "X,
subsequent MAKE commands in FOO will only affect the value of X within FOO.
Normally, MAKE would change the value of X in any calling procedures as well as in
FOO, or, if there were no procedure inputs with the name X, it would change the value of
the global variable. Just as procedure inputs have no value outside of the procedure, a
local variable has no value outside its procedure. In fact, local variables are exactly like
procedure inputs except that they have to be given a value with MAKE instead of when
the procedure is called. LOCAL is most useful in procedures which require temporary
variables, particularly when REQUEST and READCHARACTER are used. For example,
the following procedure asks a question and guarantees a response.

TO ASK :QUESTION
LOCAL “ANSWER
PRINT :QUESTION
MAKE "ANSWER REQUEST
IF EMPTY? :ANSWER OUTPUT ASK

:QUESTION
ELSE OUTPUT :ANSWER

END

MAKE Takes two inputs, the first of which must be a word. It treats the
word as a variable name, and makes the second input be the value (thing) of the variable.
Here is a simple example:

MAKE "MYAGE 21

Since MAKE evaluates its first input, you can use it to alter a variable whose name is the
result of some expression:

TO ARSET :ARRAYNAME :INDEX :VALUE
MAKE (WORD :ARRAYNAME :INDEX)

:VALUE
END

Commodore 64 Logo Tutorial A-149

Appendix: Reference Guide

THING Outputs the value of its input, which must be a word. Note that this
gives an "extra level" of evaluation. THING "XXX is equivalent to :XXX. Sample use:

TO ARGET :ARRAYNAME :INDEX
OUTPUT THING (WORD :ARRAYNAME

:INDEX)
END

THING? Outputs TRUE if its input has a value associated to it. Example:

THING? "NUM
FALSE

MAKE "NUM 5
THING? "NUM
TRUE

4.6 Conditionals

ALLOF Takes a variable number of inputs (default is two) and outputs
TRUE if all are TRUE. If there are more than two inputs, there must be an opening
parenthesis before ALLOF, and a space and a closing parenthesis after the last input.

ANYOF Takes a variable number of inputs (default is two) and outputs
TRUE if at least one is TRUE. If there are more than two inputs, there must be an
opening parenthesis before ANYOF, and a space and a closing parenthesis after the last
input.

ELSE Used in IF ... THEN ... ELSE.

IF Used in the basic conditional form IF condition THEN action. The
condition should be a Logo expression which outputs the word TRUE or FALSE. A Logo
variable whose value is TRUE or FALSE or a user procedure which outputs TRUE or
FALSE satisfies this condition, as do the various predicates (testing functions) such as <,
>, =, LIST?, ALLOF, etc. The action may be any number of Logo commands. If the
condition outputs TRUE, then the rest of the commands from the THEN until the end of
the line (or an ELSE, see above) are performed. The "THEN" may always be omitted.
Here are some sample IF statements:

IF HEADING = :OHEADING THEN STOP

IF ALLOF :X=0 :Y=0 PRINT [YOU WON!] STOP

IF WORD? :ITEM PRINT1 FIRST :ITEM PRINT BF
:ITEM

A-150 Commodore 64 Logo Tutorial

Appendix: Reference Guide

IFFALSE Executes rest of line only if result of preceding TEST was false.
Abbreviated: IFF

IFTRUE Executes rest of line only if result of preceding TEST was true.
Abbreviated: IFT

NOT Outputs TRUE if its input is FALSE, FALSE if its input is TRUE.

TEST Tests a condition to be used in conjunction with IFTRUE and
IFFALSE. TEST takes one input, which must be either TRUE or FALSE. The result of
the most recent TEST in each procedure is used by IFTRUE and IFFALSE, and is local
to the current procedure.

THEN Used with IF ... THEN ... ELSE ...

4.7 Control

GO Takes a word as input and transfers to the line with that label. You
can only GO to a label within the same procedure. Labels are defined by typing them at
the beginning of the indicated line followed by a colon. (GO is rarely used in Logo
programming.) To break up IF statements into shorter lines, use the TEST and
IFTRUE/IFFALSE primitives.

GOODBYE Clears workspace and restarts Logo. (But it does not clear the user
machine-language area.)

OUTPUT Takes an input. Causes the current procedure to stop and output the
input to the calling procedure. If the input has to be evaluated, it outputs the result of that
evaluation. Abbreviated: OP.

REPEAT Takes a number and a list as input. RUNs the list the designated
number of times.

RUN Takes a list as input. Executes the list as if it were a typed in
command line. Note: the number of characters in the list (i.e., the number of characters
you would get if you printed it) given to RUN must not exceed the maximum number of
characters allowed in the top-level command line, 255. Otherwise, an error is signalled.

STOP Causes the current procedure to stop and return control to the
calling procedure. STOP does not mean the same thing as END. STOP is a primitive
which when executed causes the current procedure to stop executing, and returns control
to the previous procedure (or toplevel). END is used in the editor to indicate where a
procedure ends and is never executed.

Commodore 64 Logo Tutorial A-151

Appendix: Reference Guide

TOPLEVEL Aborts the current procedure and all calling procedures and returns
control to toplevel (i.e. immediate mode). Note the difference between TOPLEVEL and
STOP. STOP stops just the current procedure and continues execution with the calling
procedure, whereas TOPLEVEL aborts execution of the whole program and gives control
back to the user. It is not used very often in Logo programming.

4.8 Input and Output

.CTYO Takes one input, a number from 0 to 255. CTYO prints the
character with that ASCII number. The command stands for "Character TYpe-
Out." .CTYO is most useful for printing character code 0, which normally may not be
part of a Logo word. Except for this problem, .CTYO could have been defined as:

TO .CTYO :N
PRINT1 CHAR :N

END

ASCII Takes a character as input and outputs the number that is the
ASCII code of that character.

CHAR Takes an integer as input and outputs the character whose ASCII
code is that integer.

CLEARTEXT Clears the text screen and homes the cursor.

CLEARINPUT Clears the character input buffer of any typed-ahead characters.

CURSOR Takes two inputs, column and row, and positions the cursor there.
Columns are 0-39, rows are 0-24. 0,0 is upper left. See the CURSORPOS primitive to
find out how to determine the cursor's current position.

CURSORPOS Takes no inputs. It outputs a list containing the horizontal and
vertical position of the text cursor. Note that CURSORPOS outputs a list, but the
primitive for setting cursor position, CURSOR, takes two inputs instead of a list with two
elements.

FPRINT Operates exactly like PRINT except that it does NOT strip single
quotes when printing words or the outer level of brackets when printing lists. FPRINT is
useful when the contents of a list is not a sentence, but is simply a list, which is more
readable if the list is printed with the brackets.

A-152 Commodore 64 Logo Tutorial

Appendix: Reference Guide

Examples:

MAKE "COLORS [WHITE BLACK]
PRINT :COLORS
WHITE BLACK

FPRINT :COLORS
[WHITE BLACK]

(PRINT [WHITE BLACK] [ORANGE RED])
WHITE BLACK ORANGE RED

(FPRINT [WHITE BLACK] [ORANGE RED])
[WHITE BLACK] [ORANGE RED]

JOYSTICK Takes a number 0 or I as input, which specifies the Control Port.
The JOYSTICK primitive outputs the current state of the joystick, which should be
plugged into Control Port 2 for JOYSTICK 1 and Port 1 for JOYSTICK 0. (Using port 1

is not recommended because it interferes with the keyboard.) The output is -1 if the stick
is centered, or ranges from 0 to 7 (inclusive) if the joystick is pressed in some direction. 0
is forward, I is forward and right, and so on clockwise. If the output of JOYSTICK is
positive, multiplying it by 45 will give an input suitable for SETHEADING. The
JOYSTICK primitive has .OPTIONs. See the Miscellaneous Commands section below.
Example:

TO PLAY
MOVEJOY JOYSTICK 1
IF JOYBUTTON 1 PENDOWN ELSE

PENUP
IF RC? RUN REQUEST ;Run any typed

commands.
PLAY

END

TO MOVEJOY :DIR
IF :DIR < 0 STOP
SETHEADING :DIR*45 FD 8

END

JOYBUTTON Takes one input (0 or 1) describing which joystick to check.
Outputs TRUE if the joystick button is depressed, and FALSE otherwise.

NOPRINTER Terminates PRINTER mode. See PRINTER.

Commodore 64 Logo Tutorial A-153

Appendix:Reference Guide

PADDLE Takes a number 0 through 3 as input, which specifies the paddle.
Outputs a number 0-255 depending on the setting of the appropriate paddle dial. One
example that can be used with either two paddles or a joystick is SETXY PADDLE 0
PADDLE 1.

In practice, some paddles will return a slightly different range. Only the upper limit will
vary in such cases; for example, your paddles might return a range from 0 to 170.

PADDLEBUTTON Takes a number 0 through 3 as input and outputs TRUE or FALSE
depending on whether the button on the corresponding paddle is pressed. One example of
its use is IF PADDLEBUTTON 0 THEN CLEARSCREEN.

PRINT Variable number of inputs (default is 1). Prints the input on the
screen. Lists are printed in "sentence" form, without the outermost level of brackets. The

next PRINT will print on the next line of the screen. If there are multiple inputs, as in
(PRINT 1 2 3), the inputs will be printed on one line, separated by spaces. Note that for
multiple inputs, the entire statement must be enclosed in parentheses. If the input to
PRINT is a procedure, it will not print the procedure, but will execute the procedure
assuming the procedure will output something to print. (See PRINTOUT) Abbreviated:
PR.

PRINT1 Like PRINT, but does not terminate output line with a return. With
multiple inputs, does not print spaces between elements.

PRINTER PRINTER selects the Commodore Serial Graphics printer for
output. The inputs to PRINT, PR, PRINT1, and FPRINT will be printed on the printer
instead of on the screen, as will error messages. NOPRINTER terminates this mode. The
PRINTER command has various .OPTIONs. See the Miscellaneous Commands section
below.

RC? Outputs TRUE if a keyboard character is pending (i.e., if
READCHARACTER would output immediately, without waiting for the user to press a
key), otherwise outputs FALSE.

READCHARACTER Outputs the least recent character in the character buffer, or
if empty, waits for an input character. See CLEARINPUT, and section 2.3. See the
explanation of the INSTANT program on the utilities disk for an example of its use.
Abbreviated RC.

REQUEST Waits for an input line to be typed by the user and terminated with
RETURN. Outputs the line (as a list). Abbreviated: RQ.

A-154 Commodore 64 Logo Tutorial

Appendix: Reference Guide

SETDISK Takes one input which must be a number, and uses the disk with
that device number. The default is 8. SETDISK 9 is popular in two-disk systems.

4.9 Filing and Managing Workspace

BLOAD Takes the name of a file as input and loads it into memory at the
start address specified when the file was saved. The exact filename given as input is used;
nothing is added as with READ and READPICT. This primitive is useful for loading files
of sprite shapes and assembly language routines.

BSAVE Takes three inputs the file name, the address of the start of the
region to be saved, and the address of the end. The end address must be greater than the

start address. The following procedure will save the indicated range of sprite shape
numbers (inclusive):

TO SAVESHAPES :FILE :START :END
BSAVE WORD :FILE “.SHAPES

3072 + :START*64 3072 + :END*64+63
END

The following line will save the definitions of sprites 6 and 7 in a file called
FROGS.SHAPES, suitable for reloading with the READSHAPES procedure on the
Utilities Disk.

SAVESHAPES “FROGS 6 7

CATALOG Prints the names of files on the disk currently in the disk drive.

DOS Takes one input (a list), and interprets it as commands to DOS. All
Commodore disk commands which (in BASIC) start with PRINT#15 may be used with
the DOS command. The differences are that the OPEN command is unnecessary and the
PRINT#15 is left off of the command. Following are examples of the commands.

DOS [N0:LOGO FILES,01]
DOS [C0:GAMEBACKUP.LOG0=0:GAME LOGO]
DOS [R0:TEST.LOGO =TSET.LOGO]
DOS [S0:JOESFILE.LOGO]

The format is that the letter representing the command comes first, followed by a zero
and a colon. Next comes a file name, and what follows this varies for each command.
Following is a short description of each command.

Commodore 64 Logo Tutorial A-155

Appendix: Reference Guide

N for NEW formats a disk. The name in this case, LOGO FILES, is not a file name
but the name of the disk, It is followed by a comma and any 2 digit number.

C for COPY makes a copy of a file on the same disk. First give the new file's name
and then the old file's name using the format shown above.

R for RENAME renames a file on the disk. Give the new name then the old name of
the file as in the example above, where TSET.LOGO is the old name.

S for SCRATCH which deletes a file. For a more detailed explanation of these
command,, see the Disk Commands section in chapter 4 of the 1541 manual.

ERASEFILE Removes from the disk a file saved with SAVE. Takes file name as
input, which must begin with a " mark.

ERASEPICT Removes a picture that has been stored on the disk using
SAVEPICT. Takes picture name as input, which must begin with a " mark.

ERNAME Takes a name as input and removes that name from the workspace.
Signals an error if the name is not used. Note that unlike ERASE, the input to ERNAME
is evaluated. Thus, to erase the name TEMP, type ERNAME "TEMP. If ERNAME
TEMP is typed, TEMP is assumed to be a procedure and Logo tries to run it. See
LOCAL.

POTS Prints out the titles (names) of all the procedures in the workspace.
It is a short form for PRINTOUT TITLES.

PRINTOUT If given a procedure name as input, prints out the text of the
procedure. If given no input, prints out the last procedure defined, edited or printed out. If
given a list of procedure names as input, prints out the text of the procedures in the list.
For convenience, the input is not evaluated; thus to see a procedure called CIRCLE, you
would type PO CIRCLE and not PO "CIRCLE. Can also take auxiliary words: ALL,
NAMES, TITLES, PROCEDURES. To print out a list which is a variable, use:

RUN LIST “PO :LISTNAME

Abbreviated: PO. POTS is an abbreviation for PRINTOUT TITLES. (See also PRINT.)

A-156 Commodore 64 Logo Tutorial

Appendix: Reference Guide

READ Takes a file name as input and reads a file of Logo procedures
from disk. Destroys any graphics display. If the file makes a variable called STARTUP
which is a list, the contents of the list are RUN when the file is finished loading. Note that
READ (like most Logo primitives) evaluates its input, so you must put a quotation mark
before the filename:

READ "SPACEGAME

See the Miscellaneous Commands section below for the .OPTION associated with
READ.

READPICT Reads a picture that has been stored on disk and displays it on the
graphics screen. Takes picture name as input.

SAVE Saves the contents of the workspace on disk. Destroys any
graphics display. Takes a file name as input. You may give SAVE a second input, which
is a list of procedures to save. Note that in the two-input case, the whole command and
inputs must be enclosed in parentheses.

SAVE "MYFILE
(SAVE "NEWFILE [SQ TRI PENT])

See the Miscellaneous Commands section below for the .OPTION associated with
SAVE.

SAVEPICT Save on disk the picture on the screen. Takes picture name as
input. Note that since the input is evaluated, you must begin the filename with a quotation
mark. Example:

SAVEPICT "HOUSE

4.10 Debugging

CONTINUE Resumes execution after a PAUSE or CTRL-Z. Abbreviated: CO.

PAUSE Stops execution and allows command lines to be evaluated in the
current local environment. Equivalent to interrupt character CTRLZ. Execution is
resumed with CONTINUE, or aborted with TOPLEVEL or CTRL-G.

NOTRACE Turns off tracing.

TRACE Takes no input. Causes Logo to pause before executing each
procedure, and print the name of the procedure and its inputs. Typing any character other
than CTRL-G or CTRL-Z will cause Logo to go on to the next line. Typing CTRL-G will
cause Logo to abort to toplevel. CTRL-Z will pause, and space will continue execution.
See CTRL-W, section 1.1.3.

Commodore 64 Logo Tutorial A-157

Appendix: Reference Guide

4.11 Miscellaneous Commands

.ASPECT Changes the vertical scale at which Logo graphics are drawn.
Takes one numeric input and uses this to change the scale factor. The default value for

the factor is 0.768. This command is included because not all TV monitors have the same
amount of vertical deflection. Consequently, turtle programs that are supposed to draw
squares and circles may instead appear to draw rectangles and ellipses. If so,
the .ASPECT command can be used to attempt to compensate for the distortion. Note that
changing the factor will change the limits for permissible y-coordinates. (There is a
problem with using values of .ASPECT that are too different from 0.768: Although lines
will be drawn at the correct angle, the turtle pointer may not always appear to be pointing
exactly along the line.)

.CALL Calls a machine language subroutine in memory. The address of
the subroutine is the first input; the second input is stored in a memory location for the
routine to examine. This primitive allows users to provide their own special-purpose
primitives and interface them to Logo. See section 3.2.

.CONTENTS Returns a list of all words known to Logo. This includes names of
variables, procedures, and words used in procedures. One use might be an editing
program that, for each procedure defined, asks you whether you want to delete it. TEXT
and THING? are useful primitives to use with the elements of this list. Caution: Use of
this primitive interferes with garbage collection of "truly worthless atoms". (Actually, no
version of Logo for any microcomputer yet implements GCTWA, so the storage is never
recovered.) These are the no-longerused words that Logo has in memory, usually as the
result of typing errors. If you run short of memory, it might be because an old list
from .CONTENTS is around somewhere keeping Logo from recovering the storage
associated with no-longer-needed words.

.DEPOSIT Takes two numeric inputs, an address and a value, and deposits a
byte of data at the designated memory location. See section 3.L See below for an
explanation of the .OPTION associated with .DEPOSIT.

.EXAMINE Takes one input. Outputs the value of the byte at the specified
address. See section 3.1. See below for an explanation of the .OPTION associated
with .EXAMINE.

.GCOLL Forces a garbage collection.

.NODES Outputs the number of currently free nodes. To obtain a true count
of free memory, type .GCOLL before typing .NODES.

A-158 Commodore 64 Logo Tutorial

Appendix: Reference Guide

.OPTION The .OPTION primitive is provided to alter the behavior of the
built-in Logo primitives. It takes three inputs. The first input is the name of the primitive

to alter, the second is which behavior to alter, and the third is the new value for the
option. Sometimes the options are only loosely associated with the primitives, but there
they are. See section 4.12 for a full discussion of the various options.

.SPRINT Takes one input, a shape number, and prints the definition of that
shape on the textscreen using balls and dots. This primitive is used mainly by the sprite
shape editor.

Causes the rest of the line not to be evaluated. Useful for including comments in
procedures and procedure titles.

4.12 The .OPTION primitive

The .OPTION primitive allows you to alter the operations of some primitives. Here is a
full list of the primitives and their various options:

DRAW

.OPTION "DRAW 0 :N
Sets the default background color for turtle graphics to N. This color, which normally
defaults to Medium Gray (11), will be used when Logo leaves NODRAW mode and
enters DRAW mode, and when switching between SINGLECOLOR and
DOUBLECOLOR.

.OPTION "DRAW 0 2
will set the default graphics screen color to red. To change the background color while
turtle graphics is in use, use the BACKGROUND command as normal. This option is
provided for users who decide a particular color is better for their television than grey 11.
Blue 6 is a frequent choice for color TVs, but looks abominable on Black&White TVs.
The SINGLECOLOR and DOUBLECOLOR primitives will reset the background color
to default color specified with this .OPTION.

.OPTION "DRAW 1 :N
sets the default pen color used by DRAW. DRAW will always restore the pencolor to this
value when coming from NODRAW mode or switching between SINGLECOLOR and
DOUBLECOLOR. It defaults to 1 (white).

.DEPOSIT, .EXAMINE

.OPTION ".DEPOSIT 0 :N, .OPTION ".EXAMINE 0 :N
N=2 Kernel and character set 4K ROM instead of I/O.
N=4 Logo stack and workspace - 64K Ram. No I/O space
N=6 Kernel and I/O. This is the default. See section 3.1 for a fuller description of these
various memory map modes.

Commodore 64 Logo Tutorial A-159

Appendix: Reference Guide

EDIT

The .OPTIONs for EDIT correspond to those for DRAW:

.OPTION "EDIT 0 :N
sets the background color for the editor (default setting is 11)

.OPTION "EDIT 1 :N
sets the text color for the editor (default setting is 1)

JOYSTICK

.OPTION "JOYSTICK 0 :N
If N is 1, JOYSTICK will output a number which is the sum of the switch values. This
mode is documented in the Commodore Programmer's Reference Guide. The default for
N is 0.

PRINTER

Changes to these options take effect at the PRINTER or NOPRINTER commands, and at
the end of each line sent to the printer.

.OPTION "PRINTER 0 :N
sets the printer serial device number (normally 4) to :N. Other device numbers are useful
for different peripherals.

.OPTION "PRINTER 1 :N
sets the secondary address for PRINTER. This is normally 0, which means that the
Commodore VIC-1525E printer should use the uppercase/graphics character set. If you
call this primitive with N being 7, the printer will be set up in upper/lowercase mode.
Other peripheral devices may have different uses for different secondary addresses.

.OPTION "PRINTER 2 :N
controls whether printout directed to the printer is also printed to the screen. The default
value, 0, causes printout to be echoed to the screen; setting the option to 1 inhibits this
behavior.

RC

.OPTION "RC 0 :N

directs whether "interrupt characters" will be processed immediately (as normal, :N=0) or
treated as normal characters, available for typing and readable by RC and
READCHARACTER. The action of each interrupt character listed below is controlled by
one bit in this option. If the bit is 0, then the interrupt character has its usual significance.
If the bit is 1, then the character is treated like any other control character.

A-160 Commodore 64 Logo Tutorial

character number
CTRL-G 1
CTRL-Z 2
CTRL-W 4
fl 8
f3 16
f5 32

A typical use of this feature is a system like the INSTANT program included on the Logo
Utilities Disk. The program could disable interrupt characters and assign its own
meanings to the characters normally reserved for special immediate actions in Logo.

Another occasion where disabling interrupts is useful is in procedures which do things
which must be undone before returning to toplevel. For example, this option may be used
to inhibit CTRL-G while output is directed to the printer or other special output device.

Note that this option affects only the action of interrupt keys, that is, the keys which
perform actions even while a procedure is running. It does not alter the behavior of the
editing keys.

Use the following procedures for disabling and re-enabling the interrupt characters. To
enable or disable several keys at once, sum their values from the above table and use the
result as input to the DISABLE or ENABLE procedures.

TO DISABLE :KEYBIT
.OPTION "RC 0 BITOR (.OPTION "RC 0) :KEYBIT

END

TO ENABLE :KEYBIT
.OPTION “RC 0 BITAND (.OPTION “RC 0) 255-:KEYBIT

END

READ, SAVE

.OPTION "READ 0 :N
N = 0 is the default setting, for normal behavior. N=1 The file will be read into the editor
but will not be evaluated. This setting is usually used when the editor is employed as a
text editor. The TEXTEDIT utilities file utilizes this option.

.OPTION "SAVE 0 :N
N=0 is the default setting, for normal behavior. N=1 The edit buffer is saved instead of
the workspace. This allows the editor to be used as a text editor. See the utilities file
TEXTEDIT. Normally, SAVE will clear the edit buffer, load the contents of the
workspace into the buffer, and then save it. One trick you can do with N set to I is to type
EDIT ALL. This will bring the contents of the workspace into the buffer. Then
commands can be inserted between procedures such as PRINT [THE FILE IS
HALFWAY LOADED.]. Leave the editor with CTRL-G so it will not be evaluated and
SAVE the file.

Commodore 64 Logo Tutorial A-161

Appendix: Reference Guide

STAMPCHAR

.OPTION "STAMPCHAR 0 :N
sets the method used for putting the character on the screen. N=0 means write over the
previous contents of the 8x8 area where the character goes. This means the old character
will disappear and be replaced by the new character. This is the default. N=1 means
combine by overwriting. If two letters are printed in the same 8 x 8 area, they will be
illegible; however, this mode works best for combining turtle graphics and character
graphics. N = 2 means combine by reversing whichever points are on in the character
shape. This allows you to write over graphics and then erase the printing and restore the
graphics later by stamping the same character in the same place.

.OPTION "STAMPCHAR 1 :N
controls which character set is used. N=0 means use uppercase/ graphics (the default).
N=1 means use upper/lowercase.

.OPTION "STAMPCHAR 2 :N
controls whether characters are displayed in reverse video. N = 0 means no (the default);
and N=1 means yes.

TEXTSCREEN

.OPTION "TEXTSCREEN 0 :N
controls which sprites are displayed on both the full text screen and the text portion of the
SPLITSCREEN display.

The option for TEXTSCREEN controls which sprite objects are displayed on the text
screen. Sprites 0-7 are by default never displayed. Each sprite is represented by a bit in

the number which is set by this option. The least significant bit is sprite 0, as described in
Commodore 64 Programmer's Reference Guide.

Note that which sprites are displayed on the graphics screen is controlled by their
individual HIDETURTLE/SHOWTURTLE states.

A-162 Commodore 64 Logo Tutorial

Index

Index

" G-22, C-5, W&L-24
' W&L-43
: G-37, C-5, W&L-47
+ G-4, C-1, A-143
- C-1, A-143
* G-4, C-1, A-143
/ G-4, C-1, A-143
() C-2
< > B-8
> G-50, A-143
< G-50, A-144
= G-48 to G-49, A-145
? B-7, G-64
[] C-9, W&L-44
; G-61, W&L-16, A-159
! A-114

.ASPECT, A-118, A-158

.CALL, A-127, A-158

.CONTENTS, A-124, A-158

.CTYO, A-124, A-152

.DEPOSIT, A-126, A-158, A-159

.EXAMINE, A-126, A-158, A-159

.GCOLL, A-125, A-158

.NODES, A-158

.OPTION, A-159 to A-162

.SPRINT, A-159

Abbreviations, G-4, G-18
Abelson, Harold, B-l, B-3
ABS, C-19 to C-20
Absolute value, C-19 to C-20

Addition, G-4, C-1
ADDRESSES, A-109, A-129
Addresses, useful, A-125, A-134
ADVENTURE, A-104
ALLOF, W&L-55, W&L-84, A-150
AMODES, A-109, A-128
ANIMAL program, A-104
ANIMAL.INSPECTOR program, A-105
ANIMALS, S-2 to S-3, 5-14
ANYOF, W&L-55, W&L-84, A-150
Arcs, G-43, A-60 to A-62, A-94 to A-95
ARCL, A-94
ARCR, A-94
Arithmetic, G-4, G-35, C-1
Arrow keys, B-9, G-4, G-12, A-11
ASCII, W&L-44, A-70, A-124, A-152
Aspect ratio, A-118
Assembler/Logo interfacing, A-126
ASSEMBLER, A-109, A-128
ASSORTED, S-2, S-14
ATAN, A-144
Attack/Decay, M-8

B&W, A-95
BACK, G-2, A-139
BACKGROUND, G-7 to G-8, A-118, A-139
BASE, A-95, A-95
BF, W&L-31
BG, G-7 to G-8, A-118, A-139
Binary files, A-131
Binary tree, G-54, A-49 to A-51
BITAND, A-144
BITOR, A-144
BITXOR, A-144
BK, G-2
BL, W&L-31
Blank disk, preparing for use, B-5
BLOAD, A-155
Brackets < >, B-8
BSAVE, A-155
Bugs, G-15, A-1
BUTFIRST, W&L-31, W&L-70, A-68, A-145
BUTLAST, W&L-31, W&L-70, A-145

CATALOG, G-21, G-23, A-120, A-155
CCHANGE, A-96, A-131 to A-134

Changing inputs, G-46

Commodore 64 Logo Tutorial I-1

Index

CHAR, W&L-44, A-70, A-124, A-152
CIRCLEL, A-94
CIRCLER, A-94
Circles, G-42 to G-43, A-94
Clear Key, G-6, W&L-23, A-115
Clearing the workspace, G-23 to G-25
CLEARINPUT, A-152
CLEARSCREEN, G-19, G-20, A-139
CLEARTEXT, W&L-23, A-152
<CLR> Key, G-6, W&L-23, A-115 CO, G-59, A-113
Color, G-7 to G-8, G-55 to G-57, A-118, A-119, A-131
COLORS, A-96
Comments, G-61, W&L-16
Commodore Key, S-19, A-122
Computation, B-4, C-1
Conditional, G-48 to G-50
CONTINUE, G-59, A-113, A-157
Control commands, See <CTRL>
Copying a procedure, G-34
COS, C-3, C-4, C-15, C-17, A-144
Cosine, C-15, C-17
COUNT, A-72, A-145
<CRSR> Key, B-9, S-13, A-115
CS, G-19 to G-20
<CTRL> key, B-8
 <CTRL> A, G-30 to G-31, A-11, A-115
<CTRL> B, A-11, A-116
<CTRL> C, G-11, G-14, A-13, A-111, A-116, A-124
<CTRL> D, G-30 to G-31, A-11, A-116
<CTRL> F, A-11, A-116
<CTRL> G, B-9, B-10, G-11, G-14, G-46, A-13, A-111, A-113, A-116
<CTRL> K, G-30 to G-31, A-12, A-116
<CTRL> L, A-11, A-116
<CTRL> N, G-30 to G-31, A-11, A-116
<CTRL> O, G-30 to G-31, A-12, A-116
<CTRL> P, G-4 to G-5, G-30 to G-31, A-11, A-116
<CTRL> W, G-32 to G-33, A-113, A-124
<CTRL> Z, G-59, A-113, A-124

Current sprite, S-2
Cursor, B-7, G-14, A-11
CURSOR, A-152
Cursor Key, B-9, 5-13, A-115
CURSORPOS, A-152
Curves, G-43

D, G-65
Debugging, G-15, G-57 to G-59, G-61
Decay, M-8
DEFINE, A-148
, B-9, G-12 to G-14, A-12, A-115
Demonstration programs, sprite, S-15 to S-20
DINOSAURS, S-15 to S-17
diSessa, Andrea, B-1, B-3
Disk, backup of utilities, A-88
Disk files, A-119
Disk preparation, B-5, A-88, A-155
Division, G-4, C-1
DOS, A-155
Dots, G-37, C-5
DOUBLECOLOR, G-8, A-119, A-139
DRAW, G-1, G-3, G-5, C-15, C-16, A-139, A-159
DRAWSTATE, G-62, A-67 to A-68, A-139
Draw mode, G-1, A-112
Driving the turtle, G-2
DROVE, A-59
Duration, M-2 to M-3
DYNATRACK, A-106
EDIT (ED); A-101 to A-103, A-111, A-148, A-160

I-2 Commodore 64 Logo Tutorial

Index

Edit mode, G-11 to G-14, A-11 to A-13, A-111
Editing, A-113
Editing commands, summary, G-31, A-11 to A-13
Editor, G-30 to G-31
Editor, sprite, 5-10 to S-13
EDSH, S-10 to S-11
Elephant mascot, B-2, A-55 to A-56
Ellipse, C-15, C-20 to C-21
ELSE, W&L-55, A-150

Empty list, W&L-44 to W&L-45
Empty word, W&L-44
EMPTY?, W&L-17, A-145
END, G-11, G-16 to G-17, C-6, A-148
Envelopes, M-8
ER, G-23 to G-25
ERASE, G-23 to G-25, A-148
ERASE ALL, G-23 to G-24
ERASEFILE, G-23, A-120, A-156
ERASEPICT, G-25 to G-26, A-121, A-156
Erasing, G-8 to G-9
Erasing pictures, G-25 to G-26
ERNAME, A-156
Error messages, B-8, W&L-49, A-1
Errors, typing, B-9
Exclamation point, A-114
Executing a procedure, G-15
EXPONENT, C-12 to C-15
Exponentiation, C-12 to C-15

F, G-65
FALSE, G-48 to G-50, W&L-55, A-145
FD, G-2 to G-4
Files, G-21, G-24, A-119
FIRST, W&L-31, W&L-70, A-145
FPRINT, W&L-43, A-152
FOR, A-97
For-Next loop, A-97
FORWARD, G-2 to G-4, A-140
Formatting a disk, B-5
FPUT, W&L-18, W&L-68, A-146
Function Keys, G-19, A-112
Function Key <fl>, G-5 to G-6, A-112, A-113, A-124, A-143
Function Key <f3>, G-5 to G-6, A-112, A-113, A-124, A-142
Function Key <f5>, G-5 to G-6, A-112, A-113, A-124, A-140
Functions, C-3 to C-4
FULLSCREEN, G-5 to G-6, A-112, A-140

Global variables, C-5 to C-6, W&L-9 to W&L-12
Glossary of Logo primitives, A-137to A-162
GO, A-151
GOODBYE, G-23, G-24, A-151
GRAMMAR, A-106
Graphics, B-3, G-1, A-14 to A-63
Graphics commands, summary, G-4
Graphics mode, G-1

Graphing functions, C-15 to C-21

Heading, G-33 to G-34
HEADING, G-62 to G-63, A-140
HIDETURTLE, G-26, C-15, C-16, A-140

Hierarchy of operations, C-1 to C-3
History lists, W&L-71 to W&L-75
HOME, G-19 to G-20, C-15, C-16, A-115, A-140
<HOME> Key, A-12
HT, G-26, C-15, C-16

IF, G-48 to G-50, W&L-55, A-150
IFFALSE (IFF), W&L-68, A-151
IFTRUE (IFF), W&L-68, A-151
IMMEDIATE mode, B-3, G-11 to G-12
Initializing a disk, B-5
Input, G-36, G-55
Input, changing, G-46

Commodore 64 Logo Tutorial I-3

Index

Inputs, negative, G-59
INSPI, A-107
INST Key, W&L-44, A-115, A-123
INSTANT, B-3, G-64 to G-67, W&L-3 W&L-73
INTEGER, C-3 to C-4, A-144
Integer, C-1
Integer operators, C-3 to C-4
Intelligent language interpretor, {sic interpreter} W&L-80 to W&L-87
Interpretive language, B-3
Interrupt characters, A-124
Invisible turtle, G-26
ITEM, W&L-35, A-146

JOY, A-97
JOYBUTTON, A-116, A-153
JOYSTICK, A-116, A-153, A-160

Keyboard, B-6

Language Disk, B-1

LAST, W&L-31, W&L-70, A-146
LEFT, G-2 to G-4, A-140
Levels of execution, W&L-49
Line length, A-124
LIST, W&L-68 to W&L-69, A-146
LIST?, W&L-56, W&L-67, A-146
Lists, C-9, W&L-42
Listing a procedure, G-32
Listing: Summary of commands, G-33
LOCAL, C-5, C-6, C-7 to C-10, A-75 to A-76, A-78, A-149
Local variables, C-5 to C-6, W&L-9 to W&L-12 LOG, A-97
LPUT, W&L-18, W&L-68, W&L-71, A-146
LT, G-2 to G-4
Mad-Libs, W&L-75 to W&L-79
Magic number, G-34
MAKE, C-5 to C-6, W&L-7, A-149
Manual, Tutorial, B-1
Mascots, B-2, A-55 to A-60
MEMBER?, W&L-17, W&L-56, A-147
Memory addresses, A-134
Memory organization chart, A-125
Messages, error, A-1
Mindstorms, Seymour Papert, B-1
Mode, DRAW, G-1, G-3, C-15, C-16, A-112
Mode, EDIT, G-11 to G-14, A-11 to A-13, A-111
Mode, IMMEDIATE, B-3, G-11 to G-12
Mode, NODRAW, G-5, G-6, A-111
Multiplication, G-4, C-1
Music, M-1 to M-10

N, G-65
Naming, G-10, G-21, G-22, G-37, G-39
Negative inputs, G-59 ND, G-5, G-6
NODRAW, G-5, G-6, A-111, A-140
Nodraw mode, A-111
NOPRINTER, A-153
NOT, W&L-55, A-64, A-68, A-151
Notation, standard music, M-4
NOTRACE, G-51, G-60, A-157
NOWRAP, G-46, G-47 to G-48, A-141
NUMBER?, W&L-12, A-64, A-144
Number limits, A-124
Numeric operations, C-1 to C-2

Object, W&L-27, W&L-65
OP, C-10 to C-14, W&L-26, W&L-31, W&L-50

I-4 Commodore 64 Logo Tutorial

Index

OPCODES, A-109, A-128
Operations, C-1 to C-2
Operators, C-1, C-3 to C-4
Options, A-159 to A-162
Output, G-55, C-3 to C-4
OUTPUT, C-10 to C-14, W&L-26, W&L-31, W&L-50 to W&L-51, A-151
Overview, B-2

P, G-65
Package, Commodore Logo, B-1
PADDLE, A-116, A-154
PADDLEBUTTON, A-116, A-154
Parabola, C-15, C-18 to C-20
Papert, Seymour, B-1
Parentheses, B-8, W&L-41, W&L-53, W&L-66
PAUSE, G-59, A-157 PC, G-7, G-55, A-118 PD, G-19 to G-20
PENCOLOR, G-7, G-55, A-118, A-141
PENDOWN, G-19 to G-20, A-141
PENERASE, G-8, A-118
PENUP, G-19 to G-20, A-141
Peripherals, A-116
Pictures, printing, A-98, A-117
Pictures, saving on disk, G-25, A-120
PIG, A-108
Pitch, M-4 to M-5
Planning a procedure, G-16 to G-18, G-36 to G-37
PLAY, M-4
PLOTTER, A-98
PO, G-23, G-32, A-112
PO ALL, G-32
Pointed brackets, B-8
POLY, G-40 to G-42
POTS, G-21, G-23, A-156
PR, G-57 to G-59, W&L-7
Predicates, W&L-56 to W&L-57
Primitive, B-3, G-9 to G-10
PRINT, G-57 to G-59, W&L-7, W&L-66, A-154
PRINT1, W&L-66, A-64, A-154
PRINTER, A-117, A-154, A-160

Printers, A-116
PRINTFILE, A-103
Printing of Saved Pictures, A-98, A-117
PRINTOUT (PO), G-32, A-112, A-156
PRINTPICT, A-98, A-117
PRINTTEXT, A-103
Priority, sprite, S-17
Procedural language, B-2
Procedure, B-2, B-3, G-9 to G-10
Procedure copying, G-34
Procedure writing, G-9 to G-14
Procedure naming, G-10
Procedure saving on disk, G-21 to G-23
Procedures, A-16 to A-18
Procedures that take inputs, G-36
Projects: changing inputs, G-48, A-39 to A-43
Projects: curves, G-43, A-36 to A-38
Projects: history lists, W&L-75
Projects: language understanding, W&L-86 to W&L-87
Projects: Mad-Libs, W&L-79 to W&L-80
Projects: MAKE, W&L-12
Projects: more shapes, G-35, A-30 to A-31
Projects: PLURAL, W&L-59 to W&L-61
Projects: predicates, W&L-57
Projects: procedure, G-21, A-16 to A-19
Projects: RANDOM, G-57, A-53 to A-54
Projects: RC, W&L-6, W&L-16
Projects: recursion, G-54, A-45 to A-52

Commodore 64 Logo Tutorial I-5

Index

Projects: recursion, W&L-38
Projects: regular polygons, G-41, A-34 to A-35
Projects: REQUEST, W&L-63
Projects: shapes, G-31, A-19 to A-29
Projects: simple recursion, G-46, A-38 to A-39
Projects: sizeable shapes, G-39, A-32 to A-33
Projects: testing and stopping, G-51, A-43 to A-45
Projects: turtle driving, G-6, A-14 to A-16
Prompt, B-7 PU, G-19, G-20
PULSE, M-9

Quiz Programs, W&L-61 to W&L-65
Quotation marks, A-112
QUOTIENT, C-3 to C-4, A-144

R, G-65
Rabbit, B-2, A-55, A-56
Random numbers, G-55 to G-57
RANDOM, G-55 to G-57, C-3, A-144
RANDOMIZE, C-3, A-144
RC, W&L-3, M-5, A-63, A-124, A-160
RC?, W&L-13, W&L-56, A-154
READ, G-23 to G-24, A-120, A-157, A-161
READCHARACTER, W&L-3, M-5, A-63, A-124, A-154, A-160
READPICT, G-25 to G-26, A-120, A-157
READTEXT, A-103
Real numbers, C-1 Recalling lines, G-4 Recovery process, B-8
Recursion, G-45 to G-54, C-12 to C-14, W&L-35, W&L-74 to W&L-76, W&L-84
Recursion projects, G-46, G-54
Recursive designs, G-54, W&L-84, A-109
Release, M-9
REMAINDER, C-3, C-4, A-144
Remarks, G-61
REPEAT, G-19, A-151
Repeating with Up Arrow or <CTRL> P, G-4
Repeating keystrokes, A-135
REQUEST, C-7 to C-10, W&L-18, W&L-61 to W&L-63, A-18, A-61 to A-63
Restarting Logo, B-8
<RESTORE> Key, B-8
RESULT:, W&L-46
<RETURN> key, B-8, G-12, A-11
RIGHT, G-2 to G-4, A-141
ROUND, C-3, A-144
RQ, C-7 to C-10, W&L-18, W&L-61 to W&L-63, A-18, A-61 to A-63
RT, G-2 to G-4
RUN, A-58 to A-60, W&L-71 to W&L-75, A-151
<RUN/STOP> Key, B-8, A-13, A-111
RUNNER, S-2, S-19 to S-20
Running a procedure, G-15 to G-16

SAVE, G-21, G-22, A-119, A-157, A-161
SAVEPICT, G-25 to G-26, A-117, A-120, A-157
SAVETEXT, A-103
Saving pictures, G-25 to G-26, A-58 to A-60, A-120
Saving procedures, G-21 to G-23
Saving sprite shapes, 5-14
Saving text, A-101 to A-103

Scales, M-4
Screen, G-5
Self-starting file, 5-15, 5-19, A-122

I-6 Commodore 64 Logo Tutorial

Index

SENTENCE (SE), W&L-18, W&L-31, W&L-65 to W&L-66, A-147
SETDISK, A-155
SETHEADING (SETH), G-62 to G-63, A-141
SETSHAPE, S-8 to S-9, 5-10, A-141
SETX, G-63 to G-64, A-141
SETXY, G-63 to G-64, C-15 to C-21, A-141
SETY, G-63 to G-64, A-141
SHAPE, S-9 to S-10, A-141
Shape names, 5-14
Shape numbers, S-14
SHAPES, S-2, 5-14
<SHIFT> Key, B-10
<SHIFT-CLR> Key, G-6, W&L-23, A-115
<SHIFT-INST> Key, A-115, A-123
SHOWFILE, A-103
SHOWTEXT, A-103
SHOWTURTLE, G-26, A-142
SIN, C-3, C-4, C-15 to C-17, A-145
Single quote, W&L-43
Sine, C-15 to C-17
SING, M-5
SINGLECOLOR, G-7, A-119, A-142
SMALLX, S-7 to S-8
SMALLY, S-7 to S-8
Snail, B-2, A-55, A-57
SNOW, A-108
SOUND, M-9 to M-10
Spaces in Logo lines, G-2, G-5, G-13
Special effects, G-55
Special Technology for Special Children, B-1
SPLITSCREEN, G-5, A-112, A-142
SPRED, S-10
Sprite demonstration programs, 5-15
Sprite editor, 5-10 to 5-13
Sprite priority, S-17
Sprite shapes, S-7

SPRITEDEMOS, S-3, S-5, S-15
Sprites, B-3, S-1
Square, G-16 to G-18
SQRT, C-3, C-4, A-145
SSH, M-2
SSHER, M-2 to M-3
ST, G-26
STAMPCHAR, G-27, A-142, A-162
STAMPER, A-99
STAMPFD, A-99
Starting Logo, B-6 to B-7
Starting Logo summary, B-11
STARTUP, 5-15, S-19, A-122
State, G-33
Status line, doublecolor, A-119
STOP, G-48 to G-51, W&L-3, A-151
STOP Key, B-8, A-13, A-111
STOPPED!, G-14
Storage, A-124
Structured programming, B-3
SUBMARINE, 5-17 to S-19
Subprocedures, G-43 to G-45
Subtraction, G-4, C-1
Summary: commands with keyboard versions, G-19
Summary: editing commands, G-31
Summary: listing commands, G-33
Summary: Logo commands used so far, G-28 to G-29
Summary: sprite editing commands, S-13
Summary: starting Logo, B-11
Summary: turtle commands, G-4
Summary: Words and Lists Primitives, W&L-39, W&L-41
Superprocedure, G-43
Sustain/Release, M-9
System commands, B-3

Tangent, C-15, C-17 to C-18
TB?, S-5, 5-21
TEACH, A-100 to A-101
TELL, S-1 to S-3, A-142
Templates, W&L-82 to W&L-87
TEMPO, M-3

Commodore 64 Logo Tutorial I-7

Index

TEST, W&L-67, A-151
Testing: IF-THEN-ELSE, G-48 to G-51, W&L-55
TET, G-54, A-109
TEXT, A-148
Text editor, using Logo as, A-101 to A-103
TEXTBG, G-26, A-142
TEXTCOLOR, G-26, A-142
TEXTEDIT, A-101 to A-103
TEXTSCREEN, G-5, A-113, A-143, A-162
THEN, G-48 to G-51, W&L-3, W&L-55 to W&L-56, A-151
THING, W&L-59, A-150
THING?, A-150 TO, G-11, C-6 to C-7, A-101 to A-103, A-111, A-149
TOPLEVEL, W&L-3, A-152
Total Turtle Trip Theorem, G-35
TOWARDS, G-62 to G-63, A-143
TRACE, G-51, G-61, A-113, A-157
Tree, G-54, A-49 to A-51
TRUE, G-48 to G-51, W&L-55, A-145
TS?, 5-21
Tune blocks, M-6
Turtle, G-2
Turtle commands, G-4
Turtle driving projects, G-6, A-14
Turtle geometry, Abelson & diSessa, B-1, B-3
Tutorial Manual, B-1
TWINKLE, M-6 to M-7
Typing errors, correcting, B-9

U, G-65
UNTIL, A-104
Utilities Disk, B-1, A-88
Utilities Disk, backup, A-88
Utilities Disk files: summary, A-90
Utilities Disk files: explanation, A-94
Utilities Disk: use, A-88
Utilities: writing your own, G-55

Value, W&L-27
Variables, G-36 to G-39, C-5 to C-6, W&L-46 to W&L-48
Variables, global - See Global variables
Variables, local - See Local variables
VEHICLES, S-2, S-14

WAIT, S-21

Waveforms, M-8
WHILE, A-104
WHO, S-4, A-143
Wild card, W&L-82
WORD, W&L-31, A-147
WORD?, W&L-56, W&L-67, A-147
Word processor, using Logo as, A-101 to A-103
Words, W&L-42
Words and Lists, B-4,
Workspace, G-21, G-23
Workspace, clearing, G-23 to G-25
WRAP, G-46 to G-48, A-143
Writing a procedure, G-9 to G-14, C-6 to C-7

XCOR, G-63 to G-64, A-143
Xqpsnpfltk, W&L-81

YCOR, G-63 to G-64, A-143
Zero vs. letter 0, G-13

I-8 Commodore 64 Logo Tutorial

---Back cover:

C= commodore
COMPUTER

Commodore Business Machines, Inc.
1200 Wilson Drive • West Chester, PA 19380

Commodore Business Machines, Limited
3370 Pharmacy Avenue • Agincourt, Ontario, M1W 2K4

---Spine text:

LOGO

---Front box cover:

LOGO

C= commodore 64

LOGO
C= commodore

---Back box cover:

LOGO

A Language for Learning

LOGO is the most powerful computer language ever created for helping children and
adults learn how to think.

• Easy to use for the novice and challenging for the expert
• Encourages explanation and experimentation
• Is enjoyable and user friendly
• Interactive and even playful
• Simple to learn yet reflects the important ideas of
complex computer languages
• Visually exciting and stimulating color graphics

Learning can be fun...
Learning is fun with LOGO!

The most profound kind of learning is the skill of learning itself. LOGO ... the tool of
learners.

Commodore Business Machines, Inc. •
1200 Wilson Drive • West Chester, PA 19380

Commodore Business Machines, Limited •
3370 Pharmacy Avenue • Agincourt, Ontario, M1W 2K4

© Copyright 1983 by Commodore Electronics Ltd. All rights reserved. No part of the
programs or manual included in this work may be duplicated, copied, transmitted or
reproduced in any form or by any means without the prior written permission of
Commodore.

C= commodore
"Committed To Excellence In Education Through Technology"

0 43467 00094

---Box side text:

LOGO
C= commodore
C-64105

---Disk Labels:

C= Logo
C64105
©Commodore Business Machines, Inc.
-
commodore microcomputer-system
C= commodore

C= Logo Utilities
C64105
©Commodore Business Machines, Inc.
-
commodore microcomputer-system
C= commodore

	C= commodore
	COPYRIGHT AND TRADEMARK NOTICES

	PILOT for the Commodore 64
	PET EMULATOR
	EASYLESSON and EASYQUIZ
	PUBLIC DOMAIN SOFTWARE
	INTRODUCTION TO BASIC: PART I
	GORTEK and the MICROCHIPS
	THE WORD MACHINE and THE NAME MACHINE
	EASY SPELL 64
	SUPER EXPANDER 64
	THE MANAGER
	MUSIC COMPOSER
	THE COMMODORE 64 MACRO ASSEMBLER DEVELOPMENT SYSTEM
	SCREEN EDITOR
	EASY FINANCE I - LOANS
	EASY FINANCE II - INVESTMENTS
	EASY FINANCE III - ADVANCED INVESTMENTS
	EASY FINANCE IV - BUSINESS MANAGEMENT
	EASY FINANCE V - STATISTICS
	1525 Printer
	1526 Printer
	1520 Plotter/Printer
	Commodore Speech Module
	1701 Monitor
	1650 Automatic Modem
	PET 64
	GRAPHICS
	COMPUTATION: HANDLING NUMBERS
	WORDS AND LISTS
	SPRITES
	MUSIC
	APPENDIX
	COMMODORE 64 LOGO REFERENCE GUIDE
	LOGO SYSTEM PRIMITIVES GLOSSARY
	INDEX
	B - BEGINNING LOGO
	Your Commodore Logo Package
	This Tutorial
	Overview: What can you do with Logo?
	Graphics
	Words and Lists
	Computation
	Starting Your Commodore 64
	Starting Logo
	G - GRAPHICS
	Graphics Mode
	An Easy Way to Repeat Yourself: <CTRL> P, Up Arrow
	The Magic of PENERASE (PENCOLOR -1): Erasing
	Planning and Drawing Your Favorite Square
	What Goes Into a Procedure
	Saving Procedures: CATALOG, SAVE, POTS
	Putting Letters on the Graphics Screen: STAMPCHAR
	SUMMARY OF LOGO COMMANDS USED SO FAR
	Projects Using Shapes
	Listing a Procedure: PRINTOUT (PO), <CTRL> W
	Heading: A Matter of State
	Copying a Procedure
	A Magic Number
	Projects: More Shapes
	Introduction to Variables: Procedures That Take Inputs
	From SQUARE to POLY
	Projects: Regular Polygons
	Circles
	Projects: Curves
	Using Subprocedures
	Projects: Simple Recursion
	Recursion: Changing the Input WRAP, NOWRAP
	Projects: Changing Inputs
	Using the Full Power of Recursion
	NUMBER 1 NUMBER 2 NUMBER 3

	COUNT.PLUS :NUMBER + 1 COUNT.PLUS :NUMBER + 1
	Recursion Projects
	Special Effects and New Utilities
	RANDOM Numbers, Numbers from Arithmetic Operations, Inputs, Outputs
	Projects Using Random

	Negative Inputs
	Position When You Want It: XCOR, YCOR, SETX, SETY, SETXY

	WHAT PICTURE DO YOU WANT TO SHOW?
	WHAT DO YOU WANT TO CALL THIS PICTURE?
	Interactive Procedures: LOCAL, REQUEST
	Projects with RC: Extending QUICKDRAW

	THERE IS NO NAME LENGTH
	THERE IS NO NAME NUM
	Projects with MAKE: More Extensions to QUICKDRAW
	Interactive Programs Without Waiting: RC?
	Projects with RC, RC?: Extensions to LOOP

	RESULT: TRUE
	RESULT: FALSE
	RESULT: TRUE
	RESULT: FALSE
	RESULT: TRUE
	Some Friendly Introductions: SENTENCE (SE), REQUEST, LPUT, FPUT

	THE TURTLE'S PEN IS NOW DOWN
	THE TURTLE'S PEN IS NOW UP
	WHAT'S YOUR NAME?
	NICE TO MEET YOU, HANNIBAL THE TURTLE
	NICE TO MEET YOU, HANNIBAL THE TURTLE
	THERE IS NO NAME KNOWN
	Interlude: Clearing the Text Screen with CLEARTEXT

	RESULT: 5
	RESULT: [COMMODORE 64 LOGO]
	RESULT.-BEEP
	LOVES [DREAMS ABOUT] KISSED HATES [CAN'T
	A Generalization Using Recursion: ITEM
	Projects Using ITEM and Recursion
	DEFINITIONS AND MODELS
	Some Important Primitives Used in this Chapter

	RESULT: ‘A BC'
	A BC
	RESULT: [A BC]
	A BC
	RESULT: C
	RESULT: BC
	Programming - Some Metaphors and Some Review

	RESULT: CATS
	RESULT: HORSES
	How Logo Interprets a Command
	Projects with Predicates
	Ordered Rules
	Projects with PLURAL
	Projects with REQUEST
	An Application of LPUT in Interactive Graphics: RUN

	RESULT [WE THINK CATS ARE GREAT]
	RESULT: [WE LOVE SANDY MORE THAN ANYBODY]
	Projects with Mad-Libs

	WHAT'S YOUR NAME?
	WHO ARE YOU?
	WHAT'S YOUR NAME?
	MY NAME IS LOGO. WHAT'S YOURS?
	HI, WHAT'S YOUR NAME?
	Projects with Language Understanding
	Getting Ready To Use Sprites
	Talking to Sprites: TELL
	A Program Using TELL
	Which sprite: WHO
	Sprite Shapes
	Changing Sprite Size: BIGX, BIGY, SMALLX, SMALLY

	RESULT: 0
	RESULT: 1
	RESULT 2
	The Sprite Editor: EDSH
	Saving Shapes
	DINOSAURS
	SUBMARINE
	Suggestions for Ambitious Programmers
	Preparation: READ
	Duration
	Procedures
	Envelopes
	ATTACK/DECAY
	Moving the Cursor
	Moving the Text
	Deleting Text
	Leaving EDIT Mode
	Procedure Projects
	Projects Using Shapes
	Projects: More Shapes
	Projects: Sizable Shapes
	Projects with Regular Polygons
	Projects: Curves
	Projects: Simple Recursion
	Projects: Testing and Stopping
	Projects Using Random
	Mascots: Elephant, Rabbit, Snail
	THE COMMODORE LOGO UTILITIES DISK
	Summary of Utilities Disk Files

	RESULT: 11
	RESULT: 8192
	RESULT: 15
	ATAN
	Control
	RESULT: TRUE
	FALSE
	TRUE

	EDIT
	RC
	C= commodore
	LOGO
	C= commodore
	LOGO
	A Language for Learning
	C= commodore
	LOGO

