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Introduction
On January 21th 2021 the Raspberry Pi Foundation announced a microcontroller board, the
Raspberry Pi Pico. At its heart there is a brand new microcontroller, the RP2040. A quick browsing
on the specs will show that it’s very powerful: two ARMM0+ running at 133MHz, 264kbytes of Ram,
all the popular interfaces (UART, I2C, SPI, ADC) and a somewhat magical Programmable I/O (PIO)
subsystem.

At the same time the Pi Pico was launched, a few other companies (close partners of the Raspberry Pi
Foundation) announced their own boards with the RP2040. Later on, the RP2040 was made available
to everyone and there is now more than a dozen boards on the market, with more sure to come.

A Few RP2040 Boards

What this Book is About

The Raspberry Pi Foundation provides some pretty good documentation, including a datasheet and
an SDK user guide, so you may ask why I am writing this book.

The answer is that the official documentation is more about “what things are” than “why this is
important” or “how do I use it”. I’ve tried to explain things in a logical and clear way so you can get
a better knowing of what the RP2040 is capable of and how to use it.
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This is not a “project book”, so code examples are short and focused on an specific feature. This is
also not a “hardware book”, you will not found here much talk about designing a board around the
RP2040 (but I will talk a little about hardware on some points).

The SDK functions

The C/C++ SDK includes many libraries. Most of the functions in these libraries provides a way to
interact with the hardware, abstracting the low level registers in the RP2040.

I will not try to cover every function in the SDK. Instead I will focus on the functions I believe are
the most useful for typical programs.

You can check the full list of SDK functions in the official documentation at
https://raspberrypi.github.io/pico-sdk-doxygen/

The Examples

The examples where written in C, using the Pico SDK version 1.4.0. Like many, I am not particularly
fond of the installation process for the SDK (specially on Windows) and the use of CMake may be a
hurdle to those more accustomed to programming under the nice umbrella of an user-friendly IDE
or know only about makefiles. But the Pico SDK is the official way to access the low level stuff we
are going to see.

The examples were tested on a Pi Pico and should run on other boards, eventually with changes
regarding the available pins.

All code from the examples can be download from https://github.com/dquadros/KnowingRP2040

Whom this Book is For

This is what I would call an intermediate book, going into a few advanced topics.

A assume the reader has a little experience with microcontrollers and some very basic knowledge
of electronics.

Anyone who knows the basics of the C language should have no trouble understanding the examples.

Acknowledgments

Looking back, there are too many people that, one way or another, have helped me come to the point
where a could write this book. This is where I mention and thank a few of them.

First, my mother and father who nurtured my curiosity and addicted me to reading.
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There were many teachers that not only gave important lessons, but also encouraged me to learn
more.

In my professional life I am grateful for all that believed I could deliver and those that helped me do
so.

A special mention to the late Alberto Fabiano, who introduced me to the wild community of
hackerspaces. And to Fabio Souza and Tiago Lima at Embarcados for all their work at spreading
knowledge and their support to my technical writings.

Mauricio Aniche, my son-in-law, awarded professor and famous author, was a constant encourager
when I was giving up to procrastination.

Of course this book would not exist if not for the patience of my wife Cecilia while I sent days in
front of a PC and playing with all those “little boards”.

Updates

This is the first update after the book was “finished”, the changes include:

• A more precise explanation of the SIO registers
• Details on GPIO interrupts in Chapter 7, including a new example.
• The new Appendix D on how to access the RP2040 registers.
• Correction of typing errors and small improvements on explanations.

How to Send Feedback

If you find an error, have a suggestion or comment, you can reach me by:

• Clicking in the “Email the Author” button in the book page in leanpub.com
• Sending an email to dqsoft.blogspot@gmail.com
• Sending me a message in Twitter (@DQSoft)



The RP2040 Architecture
An overall view is usually a good starting point. When it comes to microcontrollers, an architectural
diagram will show important things like how the memories are connect to the processor and what
kind of peripherals are available.

The following picture is adapted from the RP2040 datasheet and shows the RP2040 architecture:

The RP2040 Architecture

In this chapter I will not delve deep into each part, I will just give a general idea of what they do
and mention some important points. The next chapters will go into the details.

Processor Subsystem

Let’s start by the block called Processor Subsystem. Here we have the twoARMCortex M0+ cores
and, connected to both, the SIO (Single-cycle IO block).
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The ARM core is where the instructions in our software will be decoded and executed. As we will
see later, the ARM M0+ is a very powerful RISC processor designed for embedded applications.

The SIO gives the cores low-latency, deterministic access to some peripherals (in the form of memory
mapped registers), including the GPIO. In other words, the SIO makes it easier to write code that
will run in both cores and use the same peripherals. It is designed for fast synchronization and
communication between the two cores.

Bus Fabric

The Bus Fabric gives the processor cores access to memory and other peripherals. Like many ARM
processors, there are two main buses, the AHB (called here AHB-Lite Crossbar) and the APB.

The RP2040 Bus Fabric

The AHB-Lite Crossbar routes addresses and data between 4 upstream ports (the two cores and
DMA read and write) and 10 downstream ports. Up to four AHB bus transfers can take place each
cycle.

The APB routes access to the more slower peripherals, an APB bridge connects the two buses.

Address Map

All resources on the RP2040 are mapped to memory addresses between 0x00000000 and 0xF0000000:
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Address Resource
0x00000000 ROM
0x10000000 XIP
0x20000000 SRAM
0x40000000 APB Peripherals
0x50000000 AHB-Lite Peripherals
0xD0000000 IOPORT Registers
0xE0000000 Cortex-M0+ Registers

Clock Generation

The RP2040 has a sophisticated clock generation subsystem. There are three basic clock sources:

• Ring oscillator: this internal oscillator needs no external components but has very vague
frequency guarantees (typically 6MHz, expected between 4 and 8MHz, can be anywhere from
1.8 to 12 MHz, can change with voltage or temperature).

• Crystal oscillator: the hardware reference design (and all boards so far) have an external 12MHz
crystal connected to this oscillator. The output of the crystal oscillator is fed to two PLLs that
can generate higher frequencies for USB and system clock.

• External clocks: up to three clocks, with frequencies up to 50MHz.

These sources are connected to ten clock generators; each generator can be configured to select the
source and the clock divisor. The output of these generators goes to the other subsystems.

Memory

In this subsystem we have the elements: RAM, ROM and XIP/Cache.

There are six RAM blocks (four with 64kB and two with 4kB). As we will see, this allows the two
cores to access Ram with no contentions.

The 16kbytes ROM comes from factory with the startup firmware. Among other things, it will create
an USB mass storage device used to write software to the Flash memory.

This Flash memory is not inside the RP2040. It is an external component, attached to GPIO pins
controlled by the QSPI interface. Software can be run directly from the external Flash (eXecute In
Place or XIP). To alleviate the delays of serial access to the external Flash, there is a 16kbytes cache.

PIO

The Programmable Input Out allows the RP2040 to efficiently implement many hardware protocols
that need to be implemented by “bit-banging” (careful manual control of GPIOs pins) in other
microcontrollers.
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The RP2040 has two PIOs, each with 4 state machines. This state machines can interact with GPIOs
by executing short programs. All the state machines run in parallel to the ARM processors. Data
exchange between the state machines and the processors are done through hardware queues to
alleviate timing requirements.

The result is a system where precise timing and constant signal monitoring can be achieved with
minimum processor overhead, even when very short times are required.

Peripherals

The RP2040 has the following peripherals:

• 2 UARTs (Universal Asynchronous Receiver Transmitter)
• 2 SPI (Serial Peripheral Interface)
• 2 I²C (Inter-integrated Circuit)
• PWM (Pulse Width Modulation)
• ADC (Analog to Digital Converter)
• Timer
• RTC (Real Time Clock)

IOs

The IOs subsystem includes

• The crystal driver
• GPIOs - the general purpose I/Os and the pin drivers (called Pad in the documentation)
• QSPI - High speed SPI for connecting the Flash memory where firmware will reside
• SWD - Serial Wire Debug. This interface gives an external debug the ability to load software
in Ram or Flash, control processor execution, access memory.

Future RP Microcontrollers?

While there is no official word (so far) about other RP microcontroller, the coding of the name gives
some idea of what the Raspberry Foundation expects to change in future chips:

• Different number of cores. A single core could be an even cheaper option, more than 2 cores
seem a little overkill, but who knows?

• A different type of core. The probable candidates would be the M3 (more computing power)
and the M4 (DSP instructions and, optionally, floating point).

• More (or less) Ram. Less Ramwould make the chip cheaper and/or open space to other features.
More Ram may be interesting for a more powerful core type.

• Addition of nonvolatile memory, probably Flash. This would make boards simpler and also
give faster access to nonvolatile code and data.



The Cortex-M0+ Processor Cores
The ARM Cortex-M is a group of processor cores developed by the ARM Holdings. They are based
on the ARM 32 bit RISC processor and optimized for embedded applications.

There are many Cortex-M cores, the M0+ is an update of the Cortex-M0, the lowest cost option. The
specs for the M0+ includes a few optional features (from the higher end M3 and M4) and the RP2040
implements most of them.

Key objectives of the Cortex-M0 are low cost, low energy consumption, high performance and
deterministic interruption handling and instruction timing.

The key features of the M0+ cores in the RP2040 are:

• ARMv6-M architecture.
• Von Neumann architecture, where all memory can hold code and data (as opposed to the
Harvard architecture, where there as separated memory for code and data).

• Thumb instructions (compact 16-bit encoding for a subset of the ARM instruction set) support.
• 32-bit single-cycle hardware multiplier.
• Low power sleep mode.
• 26 interrupts, plus a non-masked interrupt, with a relocatable vector table (the vector table
holds the address for the interrupt handlers).

• Debugger support through the SerialWire debug interface.
• 8 region memory protection unit.
• 24-bit SysTick timer.

In this chapter we will take a look into some low-level stuff. Most applications will not have to deal
with these.

Unprivileged and Privileged Execution

The RP2040 supports two modes of execution: Unprivileged and Privileged. After a reset code runs
in the Privileged mode, but an OS can run code in the Unprivileged mode, restricting what it can do.

Debugger Support

A debugger, like gdb, can be connected using the two wire SerialWire interface (SWD). The
following debug features are available:
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• Upload a program into Ram or Flash.
• Access memory for inspection or change.
• Four hardware breakpoints (a breakpoint stops the application when execution reaches a
specific address).

• Two watchpoints (a watchpoint stops the application when data is accessed at a specific
address).

• Program Counter Sampling Register (PCSR) for non-intrusive code profiling. The PCSR
registers the address of a “recently used” instruction, without stopping the program. By reading
it periodically, a profiler can found out where a program is spending time.

• Single step and vector catch capabilities.

You can use another Pi Pico to connect a PC to the SerialWire interface, see Appendix C.

Memory Protection Unit (MPU)

The MPU protects the system address space by dividing the memory into regions and controlling
access rights. It does not perform address translation. It is normally used by anOS to enforce privilege
rules, separate process and manage memory attributes.

The MPU supports up to 8 regions (numbered 0 to 7), plus a default memory map. If the MPU is
disabled, access is controlled by the default map. If the MPU is enabled, the default map can be
used as a background region (numbered -1). The regions can overlap, with higher numbered regions
having priority.

The size of a region must be a power of 2, from 2⁸ to 2³². Each region of size 2ⁿ can be divided in up
to 8 subregions of size 2ⁿ-³. For example, we can define a region of size 512k (2^19) to cover all the
264k of SRAM and, inside it,

When an address is accessed, the MPU will check if its covered by one of the regions and, if yes, it
will check permissions. If its not covered or the access does not pass the permission check, a fault is
generated.

The permissions checked are the write, privileged and Execute Never (XN) memory attributes.

Instruction Set

The M0+ implements the ARMv6-M Thumb instruction set. This is a compact form of the original
ARM instruction set (that is not supported). In Thumb a program is a stream of 16-bit halfwords,
aligned at even addresses. Most instructions use only one halfword. A few 32-bit instruction require
two halfwords.

Each core has a set of 32-bit registers:

• R0 to R12 are general use registers.
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• R13 is the stack pointer. The CONTROL register selects between the Master Stack Pointer and
the Process Stack Pointer

• R14 is the link register. It stores the return address for exceptions and subroutines. To nest
subroutines the code must explicit save R14 in the stack.

• R15 is the program counter that points to the current instruction. Care must be taken when
using R15 as a change in its content will cause a jump.

• PSR is the Program Status Register.
• PRIMASK controls the activation of exceptions.
• CONTROL selects the stack and the privilege level.

In most instructions, the THUMB encoding restricts register references to R0 to R7 (the LO registers,
usually indicated by an ending ‘S’ in the instruction mnemonic). A few instructions can use R0 to
R15 (the ANY registers).

The following table lists the instructions available. For details see the ARMv6-M Architecture
Reference Manual at https://developer.arm.com/documentation/ddi0419/latest.

Operation Assembler Description
Move MOVS Rd,#imed Move 8-bit constant to Rd(0-7)

MOVS Rd,Rm Move Rm(0-7) to Rd (0-7)
MOV Rd,Rm Move Rm(0-15) to Rd(0-15)

Add ADDS Rd,Rn,#imed Add 3-bit constant to Rn(0-7) result in
Rd(0-7)

ADDS Rd,#imed Add 8-bit constant to Rd(0-7) result in Rd
ADDS Rd,Rn,Rm Add Rn(0-7) to Rm(0-7) result in Rd(0-7)
ADD Rd,Rn Add Rn(0-15) to Rd(0-15) result in Rd
ADD Rd,SP,#imed Add constant to SP, result in Rd(0-7).

Constant must be multiple of 4 in range
0-1020

ADD SP,SP,#imed Add constant to SP. Constant must be
multiple of 4 in range 0-508

ADD SP,Rm Add Rm(0-15) to SP
ADCS Rd,Rn Add Rn(0-15) and carry to Rd(0-15) result in

Rd
ADR Rd,label Load label address in Rn(0-15). Label

address is codified as an offset from PC
Subtract SUBS Rd,Rn,#immed Subtract 3-bit constant from Rn(0-7) result

in Rd(0-7)
SUBS Rd,#immed Subtract 8-bit constant from Rd(0-7) result

in Rd
SUBS Rd,Rn,Rm Subtract Rm(0-7) from Rn(0-7) result in

Rd(0-7)
SBCS Rd,Rn,Rm Subtract Rm(0-7) and carry from Rn(0-7)

result in Rd(0-7)
SUB SP,#imed Subtract constant from SP. Constant must

be multiple of 4 in range 0-508
RSBS Rd,Rn,#0 Negate: Rd(0-7) = - Rn(0-7)

Multiply MUL Rd,Rn Multiply Rd(0-7) by Rn(0-7), result in Rd.
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Operation Assembler Description
Compare CMP Rn,Rm update flags on Rn(0-15) - Rm(0-15)

CMN Rn,Rm update flags on Rn(0-7) + Rm(0-7)
CMP Rn,#immed update flags on Rn(0-7) - 8-bit constant

Logical ANDS Rd,Rm Rd(0-7) = Rd(0-7) AND Rm(0-7)
EORS Rd,Rm Rd(0-7) = Rd(0-7) XOR Rm(0-7)
ORRS Rd,Rm Rd(0-7) = Rd(0-7) OR Rm(0-7)
BICS Rd,Rm Rd(0-7) = Rd(0-7) AND NOT Rm(0-7)
MVNS Rd,Rm Rd(0-7) = NOT Rm(0-7)
TST Rn,Rm update flags on Rn(0-7) AND Rm(0-7)

Shift LSLS Rd,Rm,#shift logical shift left Rm(0-7) by shift(0-31) bits,
result in Rd(0-7)

LSLS Rd,Rs logical shift left Rd(0-7) by Rs(0-7) bits
LSRS Rd,Rm,#shift logical shift right Rm(0-7) by shift(1-32) bits,

result in Rd(0-7)
LSRS Rd,Rs logical shift right Rd(0-7) by Rs(0-7) bits
ASRS Rd,Rm,#shift arithmetic shift right Rm(0-7) by shift(1-32)

bits, result in Rd(0-7)
ASRS Rd,Rs arithmetic shift right Rd(0-7) by Rs(0-7) bits
RORS Rd,Rs rotate right Rd(0-7) by Rs(0-7) bits

Load LDR Rd,[Rn+#immed] load Rd(0-7) with the word at address
Rn(0-7)+immed (0-124, multiple of 4)

LDRH Rd,[Rn+#immed] load Rd(0-7) with the halfword at address
Rn(0-7)+immed (0-62, multiple of 2)

LDRB Rd,[Rn,#immed] load Rd(0-7) with the word at address
Rn(0-7)+immed (0-31)

LDR Rd,[Rn,Rm] load Rd(0-7) with the word at address
Rn(0-7)+Rm(0-7)

LDRH Rd,[Rn,Rm] load Rd(0-7) with the halfword at address
Rn(0-7)+Rm(0-7)

LDRSH Rd,[Rn,Rm] load Rd(0-7) with the signed halfword at
address Rn(0-7)+Rm(0-7)

LDRB Rd,[Rn,Rm] load Rd(0-7) with the byte at address
Rn(0-7)+Rm(0-7)

LDRSB Rd,[Rn,Rm] load Rd(0-7) with the signed byte at address
Rn(0-7)+Rm(0-7)

LDR Rd,label load Rd(0-7) with the word at label. Label is
coded as an offset (0-1020, multiple of 4)
from PC

LDR Rd,[SP,#immed] load Rd(0-7) with the word at address
SP+immed(0-1020, multiple of 4)(

LDM Rn!,loreglist loads multiple registers(0-7) from words
starting at the address in Rn(0-7). Rn must
not be in loreglist and it is updated with the
next address

LDM Rn,loreglist loads multiple registers(0-7) from words
starting at the address in Rn(0-7). Rn must
be in loreglist and it receives the loaded
value
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Operation Assembler Description
Store STR Rd,[Rn,#immed] store Rd(0-7) in the word at address

Rn(0-7)+immed (0-124, multiple of 4)
STRH Rd,[Rn,#immed] store low hafword of Rd(0-7) at address

Rn(0-7)+immed (0-62, multiple of 2)
STRB Rd,[Rn,#immed] store low byte of Rd(0-7) at address

Rn(0-7)+immed (0-31)
STR Rd,[Rn,Rm] store Rd(0-7) in the word at address

Rn(0-7)+Rm(0-7)
STRH Rd,[Rn,Rm] store low halfword of Rd(0-7) at address

Rn(0-7)+Rm(0-7)
STRB Rd,[Rn,Rm] store low byte of Rd(0-7) at address

Rn(0-7)+Rm(0-7)
STR Rd,[SP,#immed] store Rd(0-7) at address SP+immed(0-1020,

multiple of 4)
STM R!,loreglist store multiple registers(0-7) starting at the

address in Rn(0-7). Rn is updated with the
next address

Push PUSH loreglist push registers(0-7) in the stack
PUSH loreglist,LR push registers(0-7) and LR (R14) in the stack

POP POP loreglist pop registers(0-7) from the stack
POP loreglist,PC pop registers(0-7) from the stack and return

Branch Bcc label conditional branch, label must be within
–252 to +258 bytes of current instruction

B label unconditional branch, label must be within
2 kbytes of current instruction

BL label save next instruction address in LR and
branch to label. This is a 32 bit instruction,
label can be witin 4Mbytes of current
instruction

BX Rm branch to Rm AND 0xFFFFFFFE
BLX Rm save next instruction address in LR and

branch to Rm AND 0xFFFFFFFE
Extend SXTH Rd,Rm extend signed low halfword in Rm(0-7),

result in Rd(0-7)
SXTB Rd,Rm extend signed low byte in Rm(0-7), result in

Rd(0-7)
UXTH Rd,Rm extend unsigned low halfword in Rm(0-7),

result in Rd(0-7)
UXTB Rd,Rm extend unsigned low byte in Rm(0-7), result

in Rd(0-7)
Reverse REV Rd,Rm reverse bytes in Rm(0-7), result in Rd(0-7)

REV16 Rd,Rm reverse bytes in each halfword in Rm(0-7),
result in Rd(0-7)

REVSH Rd,Rm reverse halfwords in Rm(0-7), result in
Rd(0-7)

State SVC #immed Supervisor call. Generates an exception,
typically used for requesting an OS service,
selected by immed (0-255).
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Operation Assembler Description
CPSID i Disable interrupts
CPSIE i Enable interrupts
MRS Rd,specreg Read special register specreg, result in

Rd(0-7). This is a 32 bit instruction.
MSR specreg,Rn Write Rd(0-7) to a special register. This is a

32 bit instruction.
BKPT #immed Breakpoint, causes a debug halt.

immed(0-255) can be used by the debugger
to identify the breakpoint.

Hint SEV Send event
WFE Wait for event
WFI Wait for interrupt
YIELD Indicate task is waiting and could be

swapped
NOP No operation

Barriers ISB Instruction Synchronization Barrier. This is
a 32 bit instruction.

DMB Data Memory Barrier. This is a 32 bit
instruction.

DSB Data Synchronization Barrier. This is a 32
bit instruction.

Notes:

• “XXXX Rd,Rn” can also be written as “XXXX Rd,Rd,Rn”
• The ranges of the constants come from shifting them right and limiting to a few bits in the
instruction encoding

• Some instructions have multiple encoding to support LO and ANY variants
• A word is 32 bit, a halfword is 16 bit
• LDM and STM encode the affected registers in a bit field, so the order in memory is the numeric
order of the registers not the order in the loreglist

• conditions for branch are EQ, NE, CS/HS, CC/LO, MI, PL,VS, VC, HI, LS, GE, LT, GT and LE
• special registers are APSR, IAPSR, EAPSR, XPSR, IPSR, EPSR, IEPSR, MSP, PSP, PRIMASK and
CONTROL

• Hint instructions can be used by an OS to help implement multithreading
• Barriers are used to force synchronization events by the processor with respect to retiring load
or store instructions. A memory barrier is used to guarantee completion of preceding load or
store instructions, flushing of any prefetched instructions prior to the event, or both

SIO

The SIO (single-cycle IO block) contains memory-mapped hardware that need to be accessed quickly
and concurrency-safely by the two cores.
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The RP2040 SIO

The RP2040 registers can be accessed atomically through SET, CLR and XOR addresses. As long as
you use these addresses to update the registers, there is no risk of concurrency problems between
the two core (or interrupts). If you use separate instructions to read a SIO register, generate the new
value and write back it, you can have problems if the other core or an interrupt changes the same
register. Appendix D talks more about accessing the SIO registers.

There are two features of special interest when writing multicore software using the C/C++ SDK:
the Hardware Spinlocks and the Inter-processor FIFOs.
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Hardware Spinlocks

The hardware spinlocks are 32 one bits flags, each mapped to a different memory address. After
writing any value to a spinlock the next read will return a non zero value. All other reads will return
zero.

Spinlocks are used to manage exclusive access to resources that are locked for very short periods of
time. Before an access the software will read the spinlock until it gets a non zero value. After the
access the software does a write on the spinlock to release the resource.

Inter-processor FIFOs

The SIO has two First In First Out queues, each with 8 words of 32 bits. One FIFO can only be written
by core 0 and read by core 1 and the other goes in the opposite direction.

The two processor can check if data is available in the FIFO by reading a status register or be alerted
by an interrupt.

Systick Timer

The Systick is a 24-bit counter decremented by the timer_tick (1 MHz). A register defines the value
loaded when the count reaches zero, an interrupt can be generated when this happens.

Selected SDK Functions

pico_multicore

The pico_multicore library contains functions for running code on core 1 and support for the FIFOs.

After a reset, the runtime of the SDK will run main() in core0 and put core1 to sleep.

void multicore_reset_core1 (void)

Resets core1.

void multicore_launch_core1(void (*entry)(void))

Wake up core1 and runs entry(void) on it. Core 1 must be reset before calling this function. The
interrupt vector will be the same as core 0. Uses the default core 1 stack. There are other functions
that give more control of the interrupt vector and stack.

void multicore_fifo_drain(void)

Discards all data in the read FIFO.

uint32_t multicore_fifo_pop_blocking (void)

Wait indefinitely for data available in the read FIFO and read it.
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bool multicore_fifo_pop_timeout_us (uint64_t timeout_us, uint32_t *out)

Wait for data available in the read FIFO or a timeout. Returns true if data was read and copied to
out, false if timed-out.

void multicore_fifo_push_blocking (uint32_t data)

Waits indefinitely for space in the write queue and write data to it.

bool multicore_fifo_push_timeout_us (uint32_t data, uint64_t timeout_us)

Wait for space on the write FIFO or timeout. Returns true if wrote data to the FIFO, false if timeout.

pico_sync

The pico_sync library implements four types of synchronization primitives:

• critical_section: for use in normal code and interrupt handlers, prevents execution to be
interrupted by the other core or higher priority interrupts. As interrupts are blocked, the section
should be very short. Implemented using a spinlock.

• lock_core: base synchronization primitive for mutex and semaphores.
• mutex: for use in normal (non-interrupt) code, typically used to protect data structures. To
access the data structure you first request ownership of the mutex (and wait if the other core
has it). After using the data structure, you release the ownership. There are two type of mutex:
normal and recursive, the difference been that the owner of a normal mutex will block if it
tries to get ownership again (dead-lock).

• sem: used to restrict access to resources. A semaphore has a count of available resources, when
you acquire it this count is decremented and when you release it the count is incremented.
In typical use you will block execution if you try to acquire a resource that is not available
and resume execution when the resource is made available. Acquiring should be done only in
normal code, releasing can be done in normal and interrupt code.

void critical_section_init (critical_section_t *crit_sec)

Initialize a critical section. Must be called before the other functions.

static void critical_section_enter_blocking (critical_section_t *crit_sec)

Checks the spinlock until it is free, then grab it. Use to wait for permission to enter the critical
section.

static void critical_section_exit (critical_section_t *crit_sec)

Release the spinlock, indicating that the critical section was exited.

void mutex_init (mutex_t *mtx)

void recursive_mutex_init (recursive_mutex_t *mtx)

Initialize the mutex. Must be called before the other functions.

void mutex_enter_blocking (mutex_t *mtx)

void recursive_mutex_enter_blocking (recursive_mutex_t *mtx)

Blocks until the caller can take ownership of the mutex.
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bool mutex_try_enter (mutex_t *mtx, uint32_t *owner_out)

bool recursive_mutex_try_enter (recursive_mutex_t *mtx, uint32_t *owner_out)

Checks if the mutex is free. If it is, takes ownership and returns true. If its taken, returns false.

bool mutex_enter_timeout_ms (mutex_t *mtx, uint32_t timeout_ms)

bool recursive_mutex_enter_timeout_ms (recursive_mutex_t *mtx, uint32_t timeout_ms)

bool mutex_enter_timeout_us (mutex_t *mtx, uint32_t timeout_us)

bool recursive_mutex_enter_timeout_us (recursive_mutex_t *mtx, uint32_t timeout_us)

bool mutex_enter_block_until (mutex_t *mtx, absolute_time_t until)

bool recursive_mutex_enter_block_until (recursive_mutex_t *mtx, absolute_time_t until)

This are variations of the enter_blocking with timeout. Return true if the caller got ownership of the
mutex, false if timeout occured.

void mutex_exit (mutex_t *mtx)

void recursive_mutex_exit (recursive_mutex_t *mtx)

Release the mutex.

void sem_init (semaphore_t *sem, int16_t initial_permits, int16_t max_permits)

Initialize a semaphore. initial_permits is the number of resources available at the time of creation,
max_permits is the maximum number of resources possible.

void sem_reset (semaphore_t *sem, int16_t permits)

Resets a semaphore, permits is the new current number of resources available.

int sem_available (semaphore_t *sem)

Returns the number of resources available. Not very useful if resources can also be consumed by the
other core.

bool sem_release (semaphore_t *sem)

Releases a resource.

void sem_acquire_blocking (semaphore_t *sem)

Consumes a resource, waiting if none available.

bool sem_acquire_timeout_ms (semaphore_t *sem, uint32_t timeout_ms)

bool sem_acquire_timeout_us (semaphore_t *sem, uint32_t timeout_us)

bool sem_acquire_block_until (semaphore_t *sem, absolute_time_t until)

Tries to consume a resource, waiting for one available or timeout. Returns true if a resource was
consumed or false if timed out.

Example

In this example both cores will use the ADC. Core 1 will read the internal temperature and pass the
result to Core 0. Core 0 will measure GPIO28 and print an average of the readings in stdio. A mutex
is used to control the use of the ADC and the FIFO is used to pass the temperature reading from
core 1 to core 0.
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To try this program you can use an LDR connected to GPIO28:

Circuit for dual core example

Here is the code:

Dual Core Example

1 /**

2 * @file dualcore.c

3 * @author Daniel Quadros

4 * @brief Example of using the two ARM cores in the RP2040

5 * A mutex is used to control usage of the ADC

6 * An interprocessor FIFO is used to pass data between the cores

7 * @version 0.1

8 * @date 2022-06-03

9 *

10 * @copyright Copyright (c) 2022, Daniel Quadros

11 *

12 */

13

14 #include <stdio.h>

15 #include <string.h>

16 #include <stdlib.h>

17

18 #include "pico/stdlib.h"

19 #include "pico/multicore.h"

20 #include "pico/sync.h"

21 #include "hardware/gpio.h"

22 #include "hardware/adc.h"

23

24 // Where the LDR is connected

25 #define GPIO_LDR 28
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26 #define ADC_INPUT_LDR 2

27

28 // Internal temperature sensor

29 #define ADC_INPUT_TEMPSENSOR 4

30

31 // Mutex for ADC

32 mutex_t adc_mutex;

33

34 // Factor to convert ADC reading to voltage

35 // Assumes 12-bit, ADC_VREF = 3.3V

36 const float conversionFactor = 3.3f / (1 << 12);

37

38 // This rotine will run in core 1

39 void readRpTemp() {

40 while(1) {

41 // Get access to the ADC

42 mutex_enter_blocking(&adc_mutex);

43

44 // Select ADC input and read temperature sensor voltage

45 adc_select_input(ADC_INPUT_TEMPSENSOR);

46 adc_read(); // throw away first reading after changing input

47 uint16_t adc = adc_read();

48

49 // Release the ADC

50 mutex_exit(&adc_mutex);

51

52 // Convert reading to temperature in units of 0.1 C

53 float tempC = 27.0f - (adc*conversionFactor - 0.706f) / 0.001721f;

54 int32_t tempDC = (int32_t) ((tempC * 10.0f) + 0.5f);

55

56 // Pass the value to the other core

57 multicore_fifo_push_blocking(tempDC);

58 }

59 }

60

61 // Main Program

62 int main() {

63 // Init stdio

64 stdio_init_all();

65 printf("\nDual Core Example\n");

66

67 // Init ADC

68 adc_init();
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69 adc_set_temp_sensor_enabled(true);

70 mutex_init (&adc_mutex);

71

72 // Make sure GPIO is high-impedance, no pullups etc

73 adc_gpio_init(GPIO_LDR);

74

75 // Start other core

76 multicore_launch_core1(readRpTemp);

77

78 // Main loop

79 const int MAX_COUNT = 10000;

80 int count = 0;

81 float tempSum = 0.0f;

82 float ldrSum = 0.0f;

83 while (1) {

84 // Get access to the ADC

85 mutex_enter_blocking(&adc_mutex);

86

87 // Select ADC input and read LDR voltage

88 adc_select_input(ADC_INPUT_LDR);

89 adc_read(); // throw away first reading after changing input

90 uint16_t adc = adc_read();

91

92 // Release the ADC

93 mutex_exit(&adc_mutex);

94

95 // Convert reading to voltage and accumulate

96 ldrSum += adc * conversionFactor;

97

98 // Get a temperature reading and accumulate

99 tempSum += multicore_fifo_pop_blocking()*0.1f;

100

101 // Print out the averages after MAX_COUNT readings

102 if (++count == MAX_COUNT) {

103 printf("LDR voltage: %.2f V Temperature: %.2f\n", ldrSum/MAX_COUNT, tem\

104 pSum/MAX_COUNT);

105 count = 0;

106 tempSum = 0.0f;

107 ldrSum = 0.0f;

108 }

109 }

110 }
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For compiling the code you will need the CMakeLists.txt:

CMakeList.txt for Dual Core Example

1 cmake_minimum_required(VERSION 3.13)

2

3 include(pico_sdk_import.cmake)

4

5 project(dualcore_project)

6

7 pico_sdk_init()

8

9 add_executable(dualcore

10 dualcore.c

11 )

12

13

14 target_link_libraries(dualcore PRIVATE

15 pico_stdlib

16 pico_multicore

17 pico_sync

18 hardware_adc

19 hardware_gpio

20 )

21

22 pico_enable_stdio_usb(dualcore 1)

23 pico_enable_stdio_uart(dualcore 0)

24

25 pico_add_extra_outputs(dualcore)



Reset, Interrupts and Power Control
Reset

The full reset of the RP2040 (chip-level reset) puts it in the starting state. It can be caused by:

• initial power on.
• a brown-out event (power supply dropping bellow a certain voltage). After a reset the nominal
brown out threshold is 0.86V, this threshold can be changed and the brownout detector can be
disabled under software control.

• the RUN pin being put at LOW level.
• through the SWD bus. There is a Rescue DP (debug port) available over the SWD bus that is
only intended for use in the specific case where the chip has locked up. The Rescue DP is reset
by the other means, but not when itself causes the reset.

The RP2040 has a register that informs the cause of the most recent reset.

The reset controller also allows the software to reset all peripherals (except for a few that are critical).

Selected SDK Functions

The hardware_resets library has the following functions:

static void reset_block (uint32_t bits)

Reset the blocks selected by bits. The blocks stay reseted until an unreset_ function is called.

The table bellow shows the bit for each block:

Block Bit Block Bit
USB 24 ADC0 0
UART 1 23 Bus Control 1
UART 0 22 DMA 2
Timer 21 I2C 0 3
TB Manager 20 I2C 1 4
SysInfo 19 IO Bank 0 5
System Config 18 IO Bank 1 6
SPI 1 17 JTAG 7
SPI 0 16 Pads - Bank 0 8
RTC 15 Pads - QSPI 9
PWM 14 PIO 0 10
PLL USB 13 PIO 1 11
PLL System 12
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static void unreset_block (uint32_t bits)

Removes the reset from the blocks selected by bits. It may take some time for the blocks to complete
the initialization.

static void unreset_block_wait (uint32_t bits)

Removes the reset from the blocks selected by bits and waits for the blocks to complete the
initialization.

Interrupts

Interrupt signals go to the Nested Vectored Interrupt Controller (NVIC). The NVIC decides when
to dispatch the interrupt to a handler routine, based on priorities that can be set by software. The
handling of an interrupt can itself be interrupted by a higher-priority interrupt (so we can have
nested interrupts).

The addresses of the routines that handle the interrupts are stored in a table in memory, the vector
table.

A companion to the NVIC is the Wakeup Interrupt Controller (WIC). When the RP2040 is in
DORMANT state, the WIC is responsible for the identification of interrupts and waking up the
processor to attend to them (more details in the Power Control section).

Interrupts in the NVIC are numbered from 0 to 31, but the RP2040 only uses the lower 26. The table
bellow lists the interrupts, the names used in the source column are defined in intctrl.h

IRQ Source IRQ Source
0 TIMER_IRQ_0 13 IO_IRQ_BANK0

1 TIMER_IRQ_1 14 IO_IRQ_QSPI

2 TIMER_IRQ_2 15 SIO_IRQ_PROC0

3 TIMER_IRQ_3 16 SIO_IRQ_PROC1

4 PWM_IRQ_WRAP 17 CLOCKS_IRQ

5 USBCTRL_IRQ 18 SPI0_IRQ

6 XIP_IRQ 19 SPI1_IRQ

7 PIO0_IRQ_0 20 UART0_IRQ

8 PIO0_IRQ_1 21 UART1_IRQ

9 PIO1_IRQ_0 22 ADC0_IRQ_FIFO

10 PIO1_IRQ_1 23 I2C0_IRQ

11 DMA_IRQ_0 24 I2C1_IRQ

12 DMA_IRQ_1 25 RTC_IRQ

Each processor core has an NVIC, the same interrupts are available to both cores. An interrupt
should be enabled in just one core.
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Selected SDK Functions

The hardware_irq library has the functions dealing with interrupts. This functions affect only the
NVIC of the core that calls them.

An interrupt handler routine must be a void function with no parameters.

There are three ways to attach a handler routine to an interrupt:

• Defining statically the handler explicit by declaring a void function with no parameters and
a name like isr_dma_0 (in this case for dma_irq_0). This is not recommended as it offers no
advantage and may cause link errors if another module also defines the same function.

• Use the irq_set_exclusive_handler() function to attach the handler at runtime. This should
be use for interrupts that will have only one handler.

• Use the irq_set_shared_handler() function to attach the handler at runtime. This is useful
when an interrupt is shared by multiple sources (like IO_IRQ_BANK0 for GPIO interrupts) and
you want to have multiple handlers. This incurs in a small time penalty, as a library function
will receive the interrupt and call the registered handlers.

void irq_set_priority (uint num, uint8_t hardware_priority)

Sets the priority (0 to 255) of a hardware interrupt. Lower values mean higher priority. By default
all interrupts have the priority set to PICO_DEFAULT_IRQ_PRIORITY (0x80).

void irq_set_enabled (uint num, bool enabled)

Enables (enabled = true) or disables (enabled = false) an interrupt.

bool irq_is_enabled (uint num)

Returns true if the interrupt is enabled.

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enables (enabled = true) or disables (enabled = false) the interrupts indicated by mask (each bit
correspond to an interrupt, bit 0 is TIMER_IRQ_0 and so on).

void irq_set_exclusive_handler (uint num, irq_handler_t handler)

Assign handler to handle the interrupt corresponding to num. Will trigger an assert if there is already
a handle assigned.

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)

Add a handler to an interrupt. Handlers will be called in descending order of order_priority (the
order is undefined for equal priorities).

Notice that all the handlers will be called. Each one should check (and clear) an specific cause for
the interrupt (see the example).

void irq_remove_handler (uint num, irq_handler_t handler)
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Remove a shared handler.

static void irq_clear (uint int_num)

Clears a pending interrupt.

void irq_set_pending (uint num)

Set an interrupt as pending (will call the handler if the interrupt is enabled). This normally not used,
as interrupts are generated by the hardware.

Examples

In chapter 9 (Asynchronous Serial Communication: the UARTs) there is a simple example of using
interrupts with the UART.

The following example shows how to use shared handlers and PIO (Programmable I/O) interrupts.
More details on the PIO can be found in the corresponding chapter. For now you need to know that
a PIO has four State Machines, each capable of running special programs simultaneously to the each
other and the ARM cores.

Notice: this example will not run with SDK versions prior to 1.4.0 as there was a bug in irq_add_-

shared_handler.

This example uses a PIO program that generates periodic interrupts. The period is set by writing
into the PIO Tx FIFO the number of cycles to wait between interrupts. The C program runs this
program on two State Machines, with different periods.

Interrupts will be generated and handled in this example as follows:

• Interrupts are generated by the IRQ instruction in the PIO code. Each PIO has 7 interrupt flags,
we are using “0 rel” in the IRQ instruction, meaning “flag 0 plus the state machine number”, so
we get different flag when running the same program in different state machines.

• In the state machine configuration, we are enabling the interrupt flag as a reason to generate
the PIO0_IRQ_0 interrupt.

• We set two shared handlers for PIO0_IRQ_0, each handler will check one state machine for
interrupts.

• If a handler detects that a state machine generated the interrupt, it clears it (as this is not
automatic).
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CMakeLists.txt for PIO Interrupt Example

1 cmake_minimum_required(VERSION 3.13)

2

3 include(pico_sdk_import.cmake)

4

5 project(pioint_project)

6

7 pico_sdk_init()

8

9 add_executable(pioint

10 pioint.c

11 )

12

13 pico_generate_pio_header(pioint ${CMAKE_CURRENT_LIST_DIR}/pioint.pio)

14

15 target_link_libraries(pioint PRIVATE

16 pico_stdlib

17 pico_sync

18 hardware_pio

19 hardware_irq

20 )

21

22 pico_enable_stdio_usb(pioint 1)

23 pico_enable_stdio_uart(pioint 0)

24

25 pico_add_extra_outputs(pioint)

PIO Code

1 ;

2 ; Periodic interrupts - Example for 'Knowing the RP2040' book

3 ; Copyright (c) 2022, Daniel Quadros

4 ;

5

6 .program pioint

7

8 pull // get delay

9 mov y, osr // save delay in Y

10 .wrap_target

11 loop1:

12 mov x, y // load delay in counter

13 loop2:



Reset, Interrupts and Power Control 27

14 jmp x-- loop2 // loop delay cycles

15 irq 0 rel // interrupt

16 .wrap

17

18

19 % c-sdk {

20 // Helper function to set a state machine to run our PIO program

21 static inline void pioint_program_init(PIO pio, uint sm, uint offset,

22 float freq) {

23

24 // Get an initialized config structure

25 pio_sm_config c = pioint_program_get_default_config(offset);

26

27 // Configure the clock

28 float div = clock_get_hz(clk_sys) / freq;

29 sm_config_set_clkdiv(&c, div);

30

31 // Enable our interrupt at IRQ0

32 pio_set_irq0_source_enabled(pio, pis_interrupt0 + sm, true);

33

34 // Clear IRQ flag before starting

35 pio_interrupt_clear(pio, sm);

36

37 // Load our configuration, and jump to the start of the program

38 pio_sm_init(pio, sm, offset, &c);

39

40 // Set the state machine running

41 pio_sm_set_enabled(pio, sm, true);

42 }

43 %}

C Code

1 /**

2 * @file pioint.c

3 * @author Daniel Quadros

4 * @brief Example of using PIO interrupts

5 * @version 0.1

6 * @date 2022-08-17

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */
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11

12 #include "stdio.h"

13 #include "pico/stdlib.h"

14 #include "pico/sync.h"

15 #include "hardware/irq.h"

16 #include "hardware/pio.h"

17 #include "hardware/clocks.h"

18

19 // Our PIO program:

20 #include "pioint.pio.h"

21

22 // Flag to signal interrupts received

23 volatile int intRx = 0;

24

25 // critical section for accessing the flag

26 critical_section_t cs_intRx;

27

28 // PIO and State Machines

29 PIO pio = pio0;

30 int sm1, sm2;

31

32 // Rx interrupt handler for sm1

33 void on_sm1_int() {

34 if (pio_interrupt_get(pio, sm1)) {

35 pio_interrupt_clear(pio, sm1);

36 intRx |= 1;

37 }

38 }

39

40 // Rx interrupt handler for sm2

41 void on_sm2_int() {

42 if (pio_interrupt_get(pio, sm2)) {

43 pio_interrupt_clear(pio, sm2);

44 intRx |= 2;

45 }

46 }

47

48

49 // Main routine

50 int main() {

51 // Start stdio and wait for USB connection

52 stdio_init_all();

53 while (!stdio_usb_connected()) {
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54 sleep_ms(100);

55 }

56 printf ("PIO Interrupt demo\n");

57

58 // Init the critical section

59 critical_section_init (&cs_intRx);

60

61 // Find a location (offset) in the instruction memory where there is

62 // enough space for our program and load it there

63 uint offset = pio_add_program(pio, &pioint_program);

64

65 // Find a free state machine on our chosen PIO

66 // Configure it to run our program, and start it, using the

67 // helper function we included in our .pio file.

68 sm1 = pio_claim_unused_sm(pio, true);

69 pioint_program_init(pio, sm1, offset, 200000.0f);

70 printf ("SM1 = %d\n", sm1);

71

72 // Find another free state machine on our chosen PIO

73 // Configure it to run our program, and start it, using the

74 // helper function we included in our .pio file.

75 sm2 = pio_claim_unused_sm(pio, true);

76 pioint_program_init(pio, sm2, offset, 200000.0f);

77 printf ("SM2 = %d\n", sm2);

78

79 // Set up the interrupt handlers

80 irq_add_shared_handler(PIO0_IRQ_0, on_sm1_int, 1);

81 irq_add_shared_handler(PIO0_IRQ_0, on_sm2_int, 2);

82 irq_set_enabled(PIO0_IRQ_0, true);

83

84 // The state machines are now running.

85 // Set the delays and start interrupts

86 pio_sm_put_blocking (pio, sm1, 400000);

87 pio_sm_put_blocking (pio, sm2, 700000);

88

89 // Loop testing for interrupts

90 int flags;

91 while (true) {

92 sleep_ms(1);

93

94 // Copy and clear interrupt flag

95 critical_section_enter_blocking(&cs_intRx);

96 flags = intRx;
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97 intRx &= ~3;

98 critical_section_exit(&cs_intRx);

99

100 // Print message if interrupt received

101 if (flags & 1) {

102 printf ("<< INT SM1 >>\n");

103 }

104 if (flags & 2) {

105 printf ("<< INT SM2 >>\n");

106 }

107 }

108 }

Power Control

Power consumption is a main concern in microcontroller projects, specially when battery operation
is required. To obtain high performance and low power consumption, not only low consumption
components are required but also software control over the power usage.

This allows us to implement systems where there are occasional short bursts of high power
consumption while keeping power consumption low most of the time.

The RP2040 provides a few features for reducing power consumption:

• Some peripherals can be powered down, e.g. the temperature sensor in the ADC.
• Clock can be stopped for individual peripherals and functional blocks. This can be done
automatically based on processor sleep state.

• The system clock source and (for some sources) the clock frequency can be changed without
stopping the processor.

• Memories can be put into a state-retaining power down state.

Top-level Clock Gates

The top-level clock gates control the clocks for the endpoints of each clock signal. For example, the
clk_peri feeds the SPI and UART peripherals, each one has an independent clock gate.

The state of a peripheral is maintained if its clock is temporarily removed by a clock gate. No reset
or reinitialization is required when the clock is re-enabled.

There are two registers that control the clock gates, one determines the clocks that remain enabled
when the RP2040 is placed in the SLEEP mode and the the other the clocks enabled when the RP2040
is awake.
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Sleep States

The RP2040 has two sleep states: SLEEP and DORMANT (or DEEPSLEEP).

The SLEEP state is entered when both processors are asleep and there is no outstanding system
DMA transfers. SLEEP state is exited when a processor is awaken by an interrupt. SLEEP mode is
useful when we can stop processing while waiting for a interrupt from one (or more) of the internal
peripherals. We set up the clock gates so that clock is provided only for the peripherals that can wake
the system.

The DORMANT state is more aggressive: all clock and all oscillators are disabled. DOORMANT
mode can only be exit by a GPIO event or an RTC interrupt. To use the RTC it must have same kind
of external clock source (notice that XOSC is also disabled by DORMAN).

Selected SDK Functions

Functions to put the RP2040 into sleep and dormant states are not part of the C/C++ SDK, but can
be find in pico-extras and are considered “work in progress”. The corresponding examples are in
pico-playground. Both can be downloaded from https://github.com/raspberrypi.

void sleep_run_from_dormant_source(dormant_source_t dormant_source)

This function changes all clock sources to dormant_source to prepare for sleep or dormant state.

Values for dormant_source are DORMANT_SOURCE_XOSC and DORMANT_SOURCE_ROSC. As a shortcut you
can call sleep_run_from_xosc() or sleep_run_from_rosc().

void sleep_goto_sleep_until(datetime_t *t, rtc_callback_t callback)

Puts the RP2040 in sleep state until the specified time. One of the sleep_run_from_* routines must
be called before. callback will be called after the RP2040 wakes.

void sleep_goto_dormant_until_pin(uint gpio_pin, bool edge, bool high)

Puts the RP2040 in dormant state until the specified gpio interrupt. One of the sleep_run_from_*

routines must be called before.

gpio_pin is the pin number. edge and level select the event that will wake up the RP2040:

edge level event
false false pin is LOW
false true pin is HIGH
true false pin changes from HIGH to LOW
true true pin changes form LOW to HIGH

The functions sleep_goto_dormant_until_edge_high(uint gpio_pin) and sleep_goto_dormant_-

until_level_high(uint gpio_pin) are defined as sleep_goto_dormant_until_pin(gpio_pin,

true, true) and sleep_goto_dormant_until_pin(gpio_pin, false, false)
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Example

In this example we use two buttons and an LED to play with the power control. The LED will blink
while the RP2040 is awake. Pressing and releasing the first button will put the RP2040 to sleep for
5 seconds. Pressing and releasing the second button will put the RP2040 in dormant mode until the
second button is pressed and released again.

The diagram bellow shows how to connect the LED and switches.

Circuit for sleep example

CMakeLists.txt for Sleep Example

1 cmake_minimum_required(VERSION 3.13)

2

3 include(pico_sdk_import.cmake)

4 include(pico_extras_import.cmake)

5

6 project(sleep_project)

7

8 pico_sdk_init()

9

10 add_executable(sleep

11 sleep.c

12 )

13

14 target_link_libraries(sleep

15 pico_stdlib

16 pico_time

17 hardware_sleep

18 )
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19

20 pico_add_extra_outputs(sleep)

Code for Sleep Example

1 /**

2 * @file sleep.c

3 * @author Daniel Quadros

4 * @brief Example of using the SLEEP and DORMANT states

5 * @version 0.1

6 * @date 2022-08-18

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 * This examples is an adaptation of the hello_sleep and

11 * hello_dormant examples in pico_playground.

12 *

13 */

14

15 #include "pico/stdlib.h"

16 #include "pico/sleep.h"

17 #include "pico/time.h"

18

19 #include "hardware/gpio.h"

20 #include "hardware/rtc.h"

21

22 // GPIO connections

23 #define LED 0

24 #define BTN1 2

25 #define BTN2 4

26

27 // For button detection and debounce

28 typedef enum { NOT_PRESSED, DBC_PRESS, PRESSED, DBC_RELEASE } BTN_STATE;

29

30 // Aux routine to ger milliseconds since boot

31 static inline uint32_t board_millis(void) {

32 return to_ms_since_boot(get_absolute_time());

33 }

34

35 // This routine will be called when the RTC wakes the RP2040

36 static void sleep_callback(void) {

37 }

38
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39 // Puts the RP2040 to sleep for 5 seconds

40 static void rtc_sleep(void) {

41 // Arbitrary start on 31 March 2021 18:00:00

42 datetime_t t = {

43 .year = 2021,

44 .month = 05,

45 .day = 31,

46 .dotw = 3, // 0 is Sunday

47 .hour = 18,

48 .min = 00,

49 .sec = 00

50 };

51

52 // Start the RTC to our arbitraty start

53 rtc_init();

54 rtc_set_datetime(&t);

55

56 // Sleep 5 seconds

57 t.sec = 5;

58 sleep_goto_sleep_until(&t, &sleep_callback);

59 }

60

61

62 // Main routine

63 int main() {

64

65 // We will run from XOSC

66 sleep_run_from_xosc();

67

68 // Init the GPIO pins

69 gpio_init(LED);

70 gpio_set_dir(LED, true);

71 gpio_init(BTN1);

72 gpio_set_dir(BTN1, false);

73 gpio_pull_up(BTN1);

74 gpio_init(BTN2);

75 gpio_set_dir(BTN2, false);

76 gpio_pull_up(BTN2);

77

78 // Main loop

79 uint32_t ledTime = board_millis();

80 bool ledValue = false;

81 BTN_STATE btn1State = NOT_PRESSED;
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82 BTN_STATE btn2State = NOT_PRESSED;

83 uint32_t btnTime;

84 while (true) {

85 // Blink LED every 300 ms (if awake)

86 if (board_millis() > ledTime) {

87 ledValue = !ledValue;

88 gpio_put(LED, ledValue);

89 ledTime = board_millis() + 300;

90 }

91

92 // Check button 1

93 if (btn2State == NOT_PRESSED) {

94 switch (btn1State) {

95 case NOT_PRESSED:

96 if (!gpio_get(BTN1)) {

97 btn1State = DBC_PRESS;

98 btnTime = board_millis() + 100;

99 }

100 break;

101 case DBC_PRESS:

102 if (board_millis() > btnTime) {

103 btn1State = PRESSED;

104 }

105 break;

106 case PRESSED:

107 if (gpio_get(BTN1)) {

108 btn1State = DBC_RELEASE;

109 btnTime = board_millis() + 100;

110 }

111 break;

112 case DBC_RELEASE:

113 if (board_millis() > btnTime) {

114 btn1State = NOT_PRESSED;

115 // Button was pressed and released

116 // Sleep

117 gpio_put(LED, false);

118 rtc_sleep();

119 }

120 break;

121 }

122 }

123

124 // Check button 2
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125 if (btn1State == NOT_PRESSED) {

126 switch (btn2State) {

127 case NOT_PRESSED:

128 if (!gpio_get(BTN2)) {

129 btn2State = DBC_PRESS;

130 btnTime = board_millis() + 100;

131 }

132 break;

133 case DBC_PRESS:

134 if (board_millis() > btnTime) {

135 btn2State = PRESSED;

136 }

137 break;

138 case PRESSED:

139 if (gpio_get(BTN2)) {

140 btn2State = DBC_RELEASE;

141 btnTime = board_millis() + 100;

142 }

143 break;

144 case DBC_RELEASE:

145 if (board_millis() > btnTime) {

146 btn2State = NOT_PRESSED;

147 // Button was pressed and released

148 // Put in dormant mode until button 1 is released

149 gpio_put(LED, false);

150 sleep_goto_dormant_until_pin(BTN1, true, true);

151 // Give some time for BTN1 release debounce

152 busy_wait_ms(100);

153 }

154 break;

155 }

156 }

157

158 }

159

160 return 0;

161 }
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Memory in the RP2040

The RP2040 has access to three types of memory:

• ROM: 16k of internal read-only memory programmed at manufacturing.
• SRAM: 264k of internal static random access memory.
• Flash: up to 16M of external flash memory, accessed via a QSPI interface.

The ROM

The ROM is at address 0x00000000, it contains the code that is executed when the RP2040 is reseted
and some utility functions.

Assuming no failures, there are three types of startup:

• Normal startup to code in Flash.
• Startup in device mode (Flash CSn forced low, for example by a BOOT button).
• Watchdog boot-to-RAM feature (see Watchdog chapter for more information).

When the RP2040 starts in device mode, it will appear as a USB Mass Storage device and a
PICOBOOT Device (used for special functions). This mode is used to load a program in the Flash by
copying a UF2 file into the Mass Storage Device.

The ROM also has utility functions for:

• Fast floating point calculations (as the M0+ cores do not have floating point hardware support).
• Fast bit counting and manipulation functions.
• Fast memory fill / copy functions

The SRAM

While the 264k SRAM is mapped in a single continuous memory address, physically it is divide in six
banks. This division allows simultaneously access to SRAM by different masters (for example, DMA
may access one bank while an ARM core is accessing another). Up to four 32-bit SRAM accesses can
take place every system clock cycle (one per master).

There are four 64kB banks (organized as 16k of 32-bit words) and two 4kB banks (organized as 1K
of 32-bit words). The first four banks can be accessed in two different ways in two different ranges
of addresses:



Memory, Addresses and DMA 38

• From 0x20000000 to 0x2003FFFF the SRAM is organized in a stripped way, mapping sequen-
tially words from each bank:
– 0x20000000 is word 0 from bank 0
– 0x20000001 is word 0 from bank 1
– 0x20000002 is word 0 from bank 2
– 0x20000003 is word 0 from bank 3
– 0x20000004 is word 1 from bank 0
– and so on

• From 0x21000000 to 0x2103FFFF the SRAM is accessed as four 64kB regions, one for each bank:
– 0x21000000 is word 0 from bank 0
– 0x21000001 is word 1 from bank 0
– 0x21010000 is word 0 from bank 1
– and so on

The smaller banks can only be accessed in a non stripped way, at addresses 0x20040000 and
0x20041000).

In most cases you will not care about banks and use SRAM as a single 264kB region. Banking only
matters if you are trying to squeeze the last drop of performance.

Last, there are two more dedicated RAM blocks that can be used in very special circumstances:

• The eXecute In Place (XIP) cache can be used as a 16kB memory block starting at 0x15000000,
if you disable the caching. This only makes sense if you are running code from SRAM, as Flash
access without the cache is very slow.

• The USB controller has a 4kB block of memory starting at 0x50100000. This can be used if are
not using USB.

Flash Memory

The RP2040 has no internal Flash memory, so for most applications an external Flash chip (of up to
16MB) has to be used. The Flash is accessed via the QSPI interface using the execute-in-place (XIP)
hardware.

The QSPI (Quad Serial Serial Peripheral Interface), is a variant of SPI where four bits are transfered
at each clock pulse. A full 32-bit word will need eight clock pulses.

The XIP hardware makes the serial interface transparent and includes a cache. Any read at a 16MB
memory window starting at 0x10000000 will look up the data in the XIP cache, and generate a serial
transfer if it is not there.

The XIP cache will normally allow program execution from Flash with minimum delays. On the
other hand, if you have data in the Flash that you will use frequently (specially with DMA) you
should copy it to SRAM (size permitting).
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Addresses

Let’s take a closer look at the RP2040 memory map. As we saw in Chapter 2, the basic map is:

Address Resource
0x00000000 ROM
0x10000000 XIP
0x20000000 SRAM
0x40000000 APB Peripherals
0x50000000 AHB-Lite Peripherals
0xD0000000 IOPORT Registers
0xE0000000 Cortex-M0+ Registers

Here are a few details (more can be found in the RP2040 datasheet).

XIP

Address Resource
0x10000000 XIP_BASE

0x11000000 XIP_NOALLOC_BASE

0x12000000 XIP_NOCACHE_BASE

0x13000000 XIP_NOCACHE_NOALLOC_BASE

0x14000000 XIP_CTRL_BASE

0x15000000 XIP_SRAM_BASE

0x18000000 XIP_SSI_BASE

The regions at 0x11000000 to 0x13000000 are mirrors to the 0x10000000 region but with different
cache options.

The registers that control the XIP are at XIP_CTRL_BASE. The registers that control the SSI (that
implements QSPI) are at XIP_SSI_BASE.

XIP_SRAM_BASE is the address where the XIP cache can be used as RAM, if cache is disabled.

SRAM

Address Resource
0x20000000 SRAM_BASE (stripped banks 0 to 3)
0x20040000 SRAM4_BASE (bank 4)
0x20041000 SRAM5_BASE (bank 5)
0x21000000 SRAM0_BASE (bank 0)
0x21010000 SRAM1_BASE (bank 1)
0x21020000 SRAM2_BASE (bank 2)
0x21030000 SRAM3_BASE (bank 3)
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APB Peripherals

Address Resource
SYSINFO_BASE 0x40000000
SYSCFG_BASE 0x40004000
CLOCKS_BASE 0x40008000
RESETS_BASE 0x4000C000
PSM_BASE 0x40010000
IO_BANK0_BASE 0x40014000
IO_QSPI_BASE 0x40018000
PADS_BANK0_BASE 0x4001C000
PADS_QSPI_BASE 0x40020000
XOSC_BASE 0x40024000
PLL_SYS_BASE 0x40028000
PLL_USB_BASE 0x4002C000
BUSCTRL_BASE 0x40030000
UART0_BASE 0x40034000
UART1_BASE 0x40038000
SPI0_BASE 0x4003C000
SPI1_BASE 0x40040000
I2C0_BASE 0x40044000
I2C1_BASE 0x40048000
ADC_BASE 0x4004C000
PWM_BASE 0x40050000
TIMER_BASE 0x40054000
WATCHDOG_BASE 0x40058000
RTC_BASE 0x4005C000
ROSC_BASE 0x40060000
VREG_AND_CHIP_RESET_BASE 0x40064000
TBMAN_BASE 0x4006C000

AHB-Lite Peripherals

Address Resource
DMA_BASE 0x50000000
USBCTRL_BASE 0x50100000
USBCTRL_DPRAM_BASE 0x50100000
USBCTRL_REGS_BASE 0x50110000
PIO0_BASE 0x50200000
PIO1_BASE 0x50300000
XIP_AUX_BASE 0x50400000
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Direct Memory Access (DMA)

The RP2040 DMA controller is capable of moving data from and to memory (and memory mapped
peripherals) independently from the processor. The processors can be executing other tasks (or
sleeping to save energy) at the same time the DMA is transferring data.

Better still, the DMA has a higher throughput than a single processor, allowing up to one 32-bit read
and one 32-bit write per clock cycle.

There are three uses for DMA:

• Memory-to-peripheral: when a peripheral signals that it is ready for more data, the DMA reads
data from RAM or Flash and write it to the peripheral’s transmit FIFO.

• Peripheral-to-memory: when a peripheral signals that it has data available, the DMA reads data
from the peripheral’s receive FIFO and write it into RAM.

• Memory-to-memory: DMA can also read data from one address in RAM and write to another
address.

The peripherals that can work with DMA are PIO, SPI, UAT, PWM, I2C, ADC and XIP.

The control of a DMA transfer is done by aDMA channel, the RP2040 has 12 independent channels.
Each channel has a set of registers to configure andmonitor the transfers. Channels can be combined
(chained) for more complex behaviors.

Channel Configuration

Each channel has four registers:

• The CTRL register configures:
– The enable or disable of the channerl
– The size of the transfer (8, 16 or 32 bits).
– The increment of the addresses after each read or write.
– The peripheral data request (DREQ) that signals when the next read or write can occur.
– An optional DMA channel that will be triggered when the current channel finishes the
configured transfers.

• The READ_ADDR register contains the address for the next read.
• The WRITE_ADDR register contains the address for the next write.
• The TRANS_COUNT register is used to control the number of transfers to be done. A read will get
the remaining transfers in the current sequence. A write to TRANS_COUNT will set the count for
the next transfer sequence.
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The addresses will normally point to Ram, Flash or a peripheral’s FIFO. They must be aligned to the
transfer size.

The control of the address increments has four components:

• INCR_READ (1 bit): 1 if the read address will be incremented.
• INCR_WRITE (1 bit): 1 if the write address will be incremented.
• RING_SEL (1 bit): selects the address that will be affected by RING_SIZE, 1 if write e 0 if read.
• RING_SIZE (4 bits): defines address wrap. If 0, address wrap is not performed. If > 0, the
increment will only affect the lower n bits of the address.

It is recommended to set the addresses and count at start of each sequences of transfers. If not, the
sequence will use the addresses at the end of the previous sequence and the count will start with the
last written value.

Configuring and Starting a Channel

Each DMA channel register can be accessed through four addresses. To understand why, we need
to talk about how the channel can be configured and how a channel is started.

The obvious way to configure a channel is for the software to write the configuration directly to the
registers. Another way is to store the configuration in memory and use another DMA channel to
load the configuration in the registers. The DMA channel configuration inmemory is called a control
block. This second option is interesting when we have many transfers to do (creating a control block
list) and we use chaining to automatically load the next control block when a sequence of transfers
finishes.

There are three ways to start (trigger) a channel:

• Writing a non-zero value to one of its registers in a specific address (so it is treated as a trigger
register).

• Setting another channel to chain to it when the sequence is finished.
• By writing in the MULTI_CHAN_TRIGGER register, this can start multiple channels at once.

A trigger will not start a channel if it is disabled or already running.

So, back to the registers addresses. Here are the offsets that can be used to access the registers:

Base offset +0x0 +0x04 +0x08 +0x0C (Trigger)
0x00 (Alias 0) READ_ADDR WRITE_ADDR TRANS_COUNT CTRL_TRIG

0x10 (Alias 1) CTRL READ_ADDR WRITE_ADDR TRANS_COUNT_TRIG

0x20 (Alias 2) CTRL TRANS_COUNT READ_ADDR WRITE_ADDR_TRIG

0x30 (Alias 3) CTRL WRITE_ADDR TRANS_COUNT READ_ADDR_TRIG
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One of the four addresses is used to make a write in the register start the channel. By having the
registers in different order as address are incremented, we can make control blocks more compact
by loading only some of the registers.

A pair of examples may make this clearer:

Single Transfer

In this example, we just want to configure and start a sequence of DMA transfers.

We can do this by writing READ_ADDR, WRITE_ADDR, TRANS_COUNT and CTRL_TRIG, in this order, using
the address in “Alias 0”. The sequence is started when CTRL_TRIG is triggered.

Transferring a Series of Fixed Size Buffers to a Peripheral

Now suppose we have some buffers, at non consecutive addresses, with data we need to transmit
using a peripheral. The number of bytes is the same in all buffers.

The transfer of each buffer is done by a DMA with the buffer address as the read address and the
peripheral transmit FIFO address as the write address (we will disable the increment of the write
address).

To fully automate the transfers, we create a series of control blocks in memory, one for each buffer,
and set a first DMA channel to transfer this control blocks to the registers of a second DMA channel
that will transfer the data in the buffer.

We could put the four parameters (read address, write address, transfer count and control) in each
control block, but only the read address will change. We can optimize it by programing the fixed
parameters (using non trigger address), putting only the read address in the control blocks and setting
the write address of the first channel to the READ_ADDR_TRIG of the second channel.

There are two more details on the use of a list of control blocks:

• To mark the end of the list, we put one more control block with zero in the trigger register (a
null trigger).

• Normally an interrupt is generated at the end of each sequence of transfers. A bit in the CTRL
register changes this behavior to only generate interrupts for null triggers.
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Data Request (DREQ) and Pacing Timers

A critical aspect for DMA performance and reliability iswhen a transfer is done. While in some cases
the answer is “as fast as possible” (for example, memory to memory DMA), most peripherals produce
and consume data at their own pace and sometimes we want to execute transfers in a periodic way.

Transfers are paced by Transfer Requests (TREQ). The options for the TREQ of a DMA channel are:

• a request from a device (DREQ)
• a request from one of four timers
• permanent (“as fast as possible”)

The RP2040 peripherals have short FIFOs that can accommodate small variances in timing, but the
DMA needs a signal from them to avoid under or overflow of the FIFOs. This signal is the Data
Request (DREQ). There are 40 options for DREQ for a channel:

DREQ Name DREQ Name
0 DREQ_PIO0_TX0 20 DREQ_UART0_TX

1 DREQ_PIO0_TX1 21 DREQ_UART0_RX

2 DREQ_PIO0_TX2 22 DREQ_UART1_TX

3 DREQ_PIO0_TX3 23 DREQ_UART1_RX

4 DREQ_PIO0_RX0 24 DREQ_PWM_WRAP0

5 DREQ_PIO0_RX1 25 DREQ_PWM_WRAP1

6 DREQ_PIO0_RX2 26 DREQ_PWM_WRAP2

7 DREQ_PIO0_RX3 27 DREQ_PWM_WRAP3

8 DREQ_PIO1_TX0 28 DREQ_PWM_WRAP4

9 DREQ_PIO1_TX1 29 DREQ_PWM_WRAP5

10 DREQ_PIO1_TX2 30 DREQ_PWM_WRAP6

11 DREQ_PIO1_TX3 31 DREQ_PWM_WRAP8

12 DREQ_PIO1_RX0 32 DREQ_I2C0_TX

13 DREQ_PIO1_RX1 33 DREQ_I2C0_RX

14 DREQ_PIO1_RX2 34 DREQ_I2C1_TX

15 DREQ_PIO1_RX3 35 DREQ_I2C1_RX

16 DREQ_SPI0_TX 36 DREQ_ADC

17 DREQ_SPI0_RX 37 DREQ_XIP_STREAM

18 DREQ_SPI1_TX 38 DREQ_XIP_SSITX

19 DREQ_SPI1_RX 39 DREQ_XIP_SSIRX

The logic in the DMA (credit-based DREQ) keeps a count of requests not yet issued, so that it can
make full use of the FIFO. For this to work a DREQ cannot be used in more than one channel and a
peripheral FIFO must not be accessed while being used by DMA.

The four pacing timers for DMA have fractional (X/Y) divisor. A request is made at the rate ((X/Y)
* sys_clk). X and Y are 16-bit numbers and X/Y must be less or equal one (limiting the rate to
sys_clk).
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Interrupts

A channel can generate an interrupt when:

• It finishes the configured number of transfers, OR
• It receives a null trigger (a zero is written in a trigger register)

DMA interrupts can be enabled or disabled on a per-channel basis. There are two system IRQ to
where enabled DMA interrupts can be routed. This allows us to give different priority to some
channels and/or divide interrupts between the two cores.

CRC Calculation

The DMA can observe (sniff ) the data transfered on one channel and update a CRC (Cyclic
Redundancy Code) accumulator. The CRCs supported are CRC-32, CRC-16 CCITT, parity and 32-bit
checksum.

The accumulator register can be written to initialize the calculation. When reading the result, there
are options for inverting and reverting the bits and to swap the bytes. This options affect only the
reading of the register, not the calculation.

Selected SDK Functions

The DMA functions are in the hardware_dma library.

Each library (hardware_xxx), for peripherals that support DMA and have multiple instances, has a
function named dma_get_xxx_dreq() that returns the number of the DREQ for that peripheral.

Channel Allocation

The library maintains a simple (but multicore safe) control of channel and timer usage:

int dma_claim_unused_channel (bool required)

This function will return the number of an unused DMA channel. This is the preferred way to select
a DMA channel, as it avoids conflicts that may result if you use a fixed number.

If required is false, the function will return -1 if all channels are in use (claimed). If required is true
and there is no free channel, the function will panic (send an error message to stdio and halt).

void dma_channel_claim (uint channel)

Marks DMA channel number channel as in use. Will cause a panic if the channel is already claimed.

void dma_claim_mask (uint32_t channel_mask)

Marks multiple DMA channels as in use. Will cause a panic if any the channels is already claimed.

Each bit in channel_mask corresponds to a channel: bit 0 to channel 0, bit 1 to channel 1 and so on.
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void dma_channel_unclaim (uint channel)

Indicates that DMA channel number channel is no longer in use.

void dma_unclaim_mask (uint32_t channel_mask)

Indicates that multiple DMA channels are no longer in use.

Each bit in channel_mask corresponds to a channel: bit 0 to channel 0, bit 1 to channel 1 and so on.

bool dma_channel_is_claimed (uint channel)

Returns true if DMA channel number channel is claimed.

int dma_claim_unused_timer (bool required)

This function will return the number of an unused DMA timer. This is the preferred way to select a
DMA timer, as it avoids conflicts that may result if you use a fixed number.

If required is false, the function will return -1 if all timers are in use. If required is true and there is
no free timer, the function will panic.

void dma_timer_claim (uint timer)

Marks DMA timer number timer as in use. Will cause a panic if the timer is already claimed.

void dma_timer_unclaim (uint timer)

Indicates that DMA timer number timer is no longer in use.

bool dma_timer_is_claimed (uint timer)

Returns true if DMA timer number timer is claimed.

Channel Configuration Manipulation

The dma_channel_config object holds the configuration of a DMA channel. This object should be
manipulated using the following functions.

static dma_channel_config dma_channel_get_default_config (uint channel)

This function returns a dma_channel_config object with a default configuration for a channel. This
is the standard way to start creating an specific configuration.

static dma_channel_config dma_get_channel_config (uint channel)

Gets a dma_channel_config object filled with the current configuration of a channel.

static void channel_config_set_read_increment (dma_channel_config *c, bool incr)

Sets the read_increment property in a channel configuration. If incr is true, read address will be
increment after each transfer.

static void channel_config_set_write_increment (dma_channel_config *c, bool incr)

Sets the write_increment property in a channel configuration. If incr is true, read address will be
increment after each transfer.
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static void channel_config_set_dreq (dma_channel_config *c, uint dreq)

Sets the DREQ number in a channel configuration.

static void channel_config_set_chain_to (dma_channel_config *c, uint chain_to)

Sets in the configuration the DMA channel that will be triggered when the current channel finishes
the configured transfers.

static void channel_config_set_transfer_data_size (dma_channel_config *c, enum dma_-

channel_transfer_size size)

Sets the transfer size in a channel configuration. Values available for size are DMA_SIZE_8, DMA_-
SIZE_16and DMA_SIZE_32.

static void channel_config_set_ring (dma_channel_config *c, bool write, uint size_bits)

Sets the address wrapping properties in a channel configuration. If write is true, the wrapping is
applied to the write address, otherwise it applies to the read address. size_bits is the number of
bits that will be affected by the increment operation, 0 turns off wrapping.

static void channel_config_set_bswap (dma_channel_config *c, bool bswap)

Sets DMA byte swapping property in a channel configuration object.

No effect if transfer size is 8. For 16 bit transfer size, the two bytes of each halfword are swapped.
For 32 bit transfer size, the four bytes of each word are swapped to reverse their order.

static void channel_config_set_irq_quiet (dma_channel_config *c, bool irq_quiet)

Sets the condition of interrupt generation in a channel configuration. If irq_quiet is false, an
interrupt will be generated at the end of each programmed transfers. If irq_quiet is true, an interrupt
will only be generated by a null transfer.

static void channel_config_set_high_priority (dma_channel_config *c, bool high_priority)

Changes the high_priority flag in a channel configuration. The scheduling of DMA channels first
look at all the high priority channels and them a single low priority. In most cases this will not make
a difference in throughput.

static void channel_config_set_enable (dma_channel_config *c, bool enable)

Enable or disable a channel in a channel configuration.

A disabled channel ignores triggers, stops new transfers and pause the current transfer (if any).

static void channel_config_set_sniff_enable (dma_channel_config *c, bool sniff_enable)

Changes the flag to engage the CRC calculation logic in a channel configuration.

To use the CRC calculation you need to enable it in the channel configuration and in the DMA (using
dma_sniffer_enable()).

Channel Configuration
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static void dma_channel_configure (uint channel, const dma_channel_config *config,

volatile void *write_addr, const volatile void *read_addr, uint transfer_count, bool

trigger)

This is the main function for setting up a DMA channel. The specified channel is configured with
the properties in the dma_channel_config object, the read and write addresses and the transfer count
are set.

If trigger is true, the channel is triggered and will start the transfers immediately.

static void dma_channel_set_config (uint channel, const dma_channel_config *config, bool

trigger)

Sets the configuration of a channel using the properties in a dma_channel_config object. If trigger
is true, the channel is triggered and will start the transfers immediately.

As the configuration do not hold the addresses or the transfer count, they should be set prior to
calling this function with trigger true.

static void dma_channel_set_read_addr (uint channel, const volatile void *read_addr,

bool trigger)

Sets the read address in a channel. If trigger is true, the channel is triggered and will start the
transfers immediately.

This is useful if you do not need to change the other configuration parameters.

static void dma_channel_set_write_addr (uint channel, volatile void *write_addr, bool

trigger)

Sets the write address in a channel. If trigger is true, the channel is triggered and will start the
transfers immediately.

This is useful if you do not need to change the other configuration parameters.

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool

trigger)

Sets the transfer count in a channel. If trigger is true, the channel is triggered and will start the
transfers immediately.

This is useful if you do not need to change the other configuration parameters.

DMA Transfers Control

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void

*read_addr, uint32_t transfer_count)

Starts a DMA transfer from a buffer. You should have previously configured the channel and set the
write address.

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void *write_addr,

uint32_t transfer_count)
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Starts a DMA transfer to a buffer. You should have previously configured the channel and set the
write address.

static void dma_start_channel_mask (uint32_t chan_mask)

Starts transfers in multiple DMA channels at the same time.

Each bit in chan_mask corresponds to a channel: bit 0 to channel 0, bit 1 to channel 1 and so on.

static void dma_channel_start (uint channel)

Starts transfer in a DMA channel.

static void dma_channel_abort (uint channel)

Stops a DMA transfer. This function when return after the DMA has stopped. Notice that this may
cause a transfer completion interrupt, even if the transfer was not completed (due to a bug in the
RP2040).

DMA Interrupts

static void dma_channel_set_irq0_enabled (uint channel, bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on DMA_IRQ_0 for
channel number channel.

static void dma_set_irq0_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on DMA_IRQ_0 for the
channels specified in channel_mask.

static void dma_channel_set_irq1_enabled (uint channel, bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on DMA_IRQ_1 for
channel number channel.

static void dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on DMA_IRQ_1 for the
channels specified in channel_mask.

static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on irq_index (0 for
DMA_IRQ_0 or 1 for DMA_IRQ_1) for channel number channel.

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask,

bool enabled)

Enables (enabled= true) or disables (enabled= false) DMA channel interrupt on irq_index (0 for
DMA_IRQ_0 or 1 for DMA_IRQ_1) for the channels specified in channel_mask.

static bool dma_channel_get_irq0_status (uint channel)

Checks if a particular channel is a cause of DMA_IRQ_0. A return of truemeans it is. As DMA has
12 channels and only 2 system interrupts, you may need to share an interrupt.
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static bool dma_channel_get_irq1_status (uint channel)

Checks if a particular channel is a cause of DMA_IRQ_1. A return of truemeans it is. As DMA has
12 channels and only 2 system interrupts, you may need to share an interrupt.

static bool dma_irqn_get_channel_status (uint irq_index, uint channel)

Checks if a particular channel is a cause of interrupt irq_index (0 for DMA_IRQ_0 or 1 for DMA_IRQ_1).
A return of true means it is. As DMA has 12 channels and only 2 system interrupts, you may need
to share an interrupt.

static void dma_channel_acknowledge_irq0 (uint channel)

Acknowledges a channel IRQ, resetting it as the cause of DMA_IRQ_0.

static void dma_channel_acknowledge_irq1 (uint channel)

Acknowledges a channel IRQ, resetting it as the cause of DMA_IRQ_1.

static void dma_irqn_acknowledge_channel (uint irq_index, uint channel)

Acknowledges a channel IRQ, resetting it as the cause of interrupt irq_index (0 for DMA_IRQ_0 or 1
for DMA_IRQ_1).

static bool dma_channel_is_busy (uint channel)

Returns true if DMA channel number channel is currently busy.

static void dma_channel_wait_for_finish_blocking (uint channel)

Blocks execution until DMA channel number channel is not busy.

CRC Calculation (DMA Sniffer)

static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable)

Enables DMA CRC calculation (sniffing) on channel channel.

mode selects the calculation

Mode Calculation
0x00 CRC-32 (IEEE 802.3)
0x01 CRC-32 (IEEE 802.3) with bit reversed data
0x02 CRC-16 (CCITT)
0x03 CRC-16 (CCITT) with bit reversed data
0x0E XOR / Parity (result is 1 if odd number of ‘1’s
0x0F 32-bit checksum

To use the CRC calculation you also need to enable it in the channel. This can be do setting
force_channel_enable true or using channel_config_set_sniff_enable() in the configuration. In
the first case it is enable directly in the channel control register, in the second you have to apply the
configuration eith dma_channel_configure().

static void dma_sniffer_set_byte_swap_enabled (bool swap)
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Enables (swap = true) or disables (swap = false) the Sniffer byte swap function.

static void dma_sniffer_disable (void)

Disables the CRC calculation logic.

DMA Timers

static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t

denominator)

Set the frequency divider for a DMA timer. The timer will run at sys_clock * numerator /

denominator. denominator must be greater or equal numerator.

static uint dma_get_timer_dreq (uint timer_num)

Returns the DREQ for timer timer_num.

DMA Usage Examples

In these two examples we will see DMA been used to transfer data from and to peripherals. The
details of the peripherals programming are in the corresponding chapters.

Collecting Data from the ADC using DMA

The main part of this example is using DMA to fill a buffer with the ADC readings of the internal
temperature sensor. To spice things a bit, we will:

• Alternate between two buffers, so we can process data in one buffer while DMA is filling the
other.

• Use the DMA interrupt to record when the transfer finished and to stop the ADC.
• Use the CRC calculation to sum the values for us.

This is an example where the read address (the peripheral FIFO) is fixed and the write address (in
the buffer) is incremented. The transfer count is the size of the buffer (number of samples).
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Collecting Data from the ADC using DMA
1 /**

2 * @file adcdma.c

3 * @author Daniel Quadros

4 * @brief Example of using DMA with the ADC in the RP2040 to read

5 * the internal temperature sensor

6 * @version 0.1

7 * @date 2022-09-06

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include <string.h>

15 #include <stdlib.h>

16

17 #include "pico/stdlib.h"

18 #include "hardware/adc.h"

19 #include "hardware/dma.h"

20

21 // Internal temperature sensor

22 #define ADC_INPUT_TEMPSENSOR 4

23

24 // DMA channel number

25 int dma_chan;

26

27 // Factor to convert ADC reading to voltage

28 // Assumes 12-bit, ADC_VREF = 3.3V

29 const float conversionFactor = 3.3f / (1 << 12);

30

31 // Buffers for ADC readings

32 #define N_SAMPLES 1000

33 int iBuf = 0; // buffer currently used by DMA

34 uint16_t buffer[2][N_SAMPLES];

35 uint32_t finishedXfer[2];

36

37

38 // This rotine will run when DMA finishes filling a buffer

39 void dma_irq_handler() {

40 // Stop ADC

41 adc_run(false);

42 // Clear the interrupt request.
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43 dma_hw->ints0 = 1u << dma_chan;

44 // Register when DMA finished

45 finishedXfer[iBuf] = to_ms_since_boot(get_absolute_time());

46 }

47

48 // Main Program

49 int main() {

50 // Init stdio

51 stdio_init_all();

52 printf("\nADC DMA Example\n");

53

54 // Init ADC

55 // We will read the temperature sensor as fast as possible

56 // and generate a DREQ when a sample goes to the FIFO

57 adc_init();

58 adc_set_temp_sensor_enabled(true);

59 adc_select_input (ADC_INPUT_TEMPSENSOR);

60 adc_fifo_setup (true, true, 1, false, false);

61 adc_set_clkdiv(0);

62

63 // Init DMA

64 dma_chan = dma_claim_unused_channel(true);

65 dma_sniffer_enable(dma_chan, 0xf, false);

66 dma_channel_config c = dma_channel_get_default_config(dma_chan);

67 channel_config_set_transfer_data_size(&c, DMA_SIZE_16);

68 channel_config_set_read_increment(&c, false);

69 channel_config_set_write_increment(&c, true);

70 channel_config_set_dreq(&c, DREQ_ADC);

71 channel_config_set_sniff_enable(&c, true);

72

73 dma_channel_configure(

74 dma_chan,

75 &c,

76 NULL, // Dont provide a write address yet

77 &adc_hw->fifo, // Read address (only need to set this once)

78 N_SAMPLES, // Transfer N_SAMPLES values

79 false // Dont start yet

80 );

81

82 // DMA will raise IRQ0 when the channel finishes to fill the buffer

83 dma_channel_set_irq0_enabled(dma_chan, true);

84 irq_set_exclusive_handler(DMA_IRQ_0, dma_irq_handler);

85 irq_set_enabled(DMA_IRQ_0, true);



Memory, Addresses and DMA 54

86

87

88 // Start transfer to first buffer

89 dma_hw->sniff_data = 0;

90 dma_channel_set_write_addr(dma_chan, buffer[iBuf], true);

91

92 // Start the ADC

93 adc_run(true);

94

95 // Main loop

96 while (1) {

97 // Make sure last transfer finished

98 dma_channel_wait_for_finish_blocking(dma_chan);

99 uint32_t finished = finishedXfer[iBuf];

100

101 // Get the sum of the samples

102 uint32_t sum = dma_hw->sniff_data;

103

104 // Switch buffers

105 iBuf = 1-iBuf;

106

107 // Set up and start DMA transfer to other buffer

108 dma_hw->sniff_data = 0;

109 dma_channel_set_write_addr(dma_chan, buffer[iBuf], true);

110 adc_run(true);

111

112 // At this point we can process buffer 1-iBuf, we will just

113 // calculate and print average temperature

114 float tempSum = sum * conversionFactor;

115 float tempC = 27.0f - (tempSum/N_SAMPLES - 0.706f) / 0.001721f;

116 printf("Temperature: %.2f ", tempC);

117 uint32_t printed = to_ms_since_boot(get_absolute_time());

118

119 // Show when the transfer finished and when we finished printing

120 printf ("Finished transfer: %u Finished printing: %u\n", finished, printed);

121 }

122 }

Sending Data to a SPI LCD Display using DMA

The display used in this example is a Nokia 5110 monochromatic LCD display with 84x48 resolution.
The controller chip is a PCD8544 that has an SPI interface.
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I will not go in all the details on the PCD8544, the point of interest here is that it has inside a display
memory that we will written to using SPI. This memory has 504 bytes, each of them associated with
8 vertical pixels:

PCD8544 memory

To flex our DMAmuscles, we will divide the screen in three horizontal strips and use DMA chaining
to get each strip from a separate area of memory.

This is an example where, in the data channel, the write address (the peripheral FIFO) is fixed and
the read address is incremented. The transfer count is the number of bytes in the screen strip.

The circuit used is in this example is this:

Connecting a Nokia 5110 display to the Pi Pico
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Here is the code:

Sending Data to a SPI LCD Display using DMA

1 /**

2 * @file spidma.c

3 * @author Daniel Quadros

4 * @brief Example of using DMA with SPI in the RP2040

5 * to drive a Nokia 5110 display

6 * @version 0.1

7 * @date 2022-09-07

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include <string.h>

15 #include <stdlib.h>

16

17 #include "pico/stdlib.h"

18 #include "hardware/spi.h"

19 #include "hardware/dma.h"

20

21 // Display connections

22 #define PIN_SCE 20

23 #define PIN_RESET 19

24 #define PIN_DC 18

25 #define PIN_SDIN 15

26 #define PIN_SCLK 14

27

28 // Data/Command selection

29 #define LCD_CMD 0

30 #define LCD_DAT 1

31

32 // Screen size

33 #define LCD_DX 84

34 #define LCD_DY 48

35

36 // Display init cmds

37 uint8_t lcdInit[] = { 0x21, 0xB0, 0x04, 0x15, 0x20, 0x0C };

38

39 // Put display pointer in home position

40 uint8_t lcdHome[] = { 0x40, 0x80 };
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41

42 // Each byte in the display memory controls 8 vertical pixels

43 // We are going to divide the display in three horizontal strips:

44 // Top 8 pixels high

45 // Main 32 pixels high

46 // Bottom 8 pixels high

47 uint8_t topScreen[2][LCD_DX];

48 uint8_t mainScreen[2][LCD_DX*4];

49 uint8_t bottomScreen[2][LCD_DX];

50 int screenDMA = 0; // main screen programmed in DMA

51

52 // SPI Configuration

53 #define SPI_ID spi1

54 #define BAUD_RATE 4000000 // 4 MHz

55 #define DATA_BITS 8

56

57 // DMA channel numbers

58 int dma_chan_data;

59 int dma_chan_ctrl;

60

61 // Flag to signal end of screen update

62 volatile bool screenUpdated = true;

63

64 // Control blocks for transfering screen data

65 // We will change the data pointers as needed

66 struct {uint32_t len; const char *data;} control_blocks[] = {

67 {LCD_DX, NULL},

68 {LCD_DX*4, NULL},

69 {LCD_DX, NULL},

70 {0, NULL} // Null trigger to end chain.

71 };

72

73 // This rotine will run when the data DMA gets a null trigger

74 void dma_irq_handler() {

75 // Clear the interrupt request.

76 dma_hw->ints0 = 1u << dma_chan_data;

77 // Set flag to indicate end

78 screenUpdated = true;

79 }

80

81 // Init screen buffers

82 void initStrips() {

83 // Horizontal Lines
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84 for (int i = 0; i < LCD_DX; i++) {

85 topScreen[0][i] = 0x55;

86 bottomScreen[0][i] = 0x66;

87 }

88 // Simple Patterns

89 for (int i = 0; i < LCD_DX; i+=2) {

90 topScreen[1][i] = 0x63;

91 topScreen[1][i+1] = 0x63;

92 bottomScreen[1][i] = 0x7F;

93 bottomScreen[1][i+1] = 0x41;

94 }

95 // Main screen is already with zeros

96 }

97

98 // Init DMA

99 void initDMA() {

100 // Get two channels

101 dma_chan_data = dma_claim_unused_channel(true);

102 dma_chan_ctrl = dma_claim_unused_channel(true);

103

104 // Set up control channel

105 dma_channel_config c = dma_channel_get_default_config(dma_chan_ctrl);

106 channel_config_set_transfer_data_size(&c, DMA_SIZE_32);

107 channel_config_set_read_increment(&c, true);

108 channel_config_set_write_increment(&c, true);

109 channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr

110 dma_channel_configure(

111 dma_chan_ctrl,

112 &c,

113 &dma_hw->ch[dma_chan_data].al3_transfer_count,

114 &control_blocks[0],

115 2,

116 false // Dont start yet.

117 );

118

119 // Set up data channel

120 c = dma_channel_get_default_config(dma_chan_data);

121 channel_config_set_transfer_data_size(&c, DMA_SIZE_8);

122 channel_config_set_dreq(&c, spi_get_dreq(SPI_ID, true));

123 channel_config_set_chain_to(&c, dma_chan_ctrl);

124 channel_config_set_irq_quiet(&c, true);

125 dma_channel_configure(

126 dma_chan_data,
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127 &c,

128 &spi_get_hw(SPI_ID)->dr,

129 NULL, // Initial read address and transfer count

130 0, // are unimportant

131 false // Dont start yet.

132 );

133

134 // DMA will raise IRQ0 when it gets a null trigger

135 dma_channel_set_irq0_enabled(dma_chan_data, true);

136 irq_set_exclusive_handler(DMA_IRQ_0, dma_irq_handler);

137 irq_set_enabled(DMA_IRQ_0, true);

138 }

139

140 // Init Display

141 void displayInit() {

142 // Configure GPIO pins

143 gpio_init(PIN_SCE);

144 gpio_set_dir(PIN_SCE, true);

145 gpio_put(PIN_SCE, true);

146 gpio_init(PIN_RESET);

147 gpio_set_dir(PIN_RESET, true);

148 gpio_put(PIN_RESET, true);

149 gpio_init(PIN_DC);

150 gpio_set_dir(PIN_DC, true);

151 gpio_put(PIN_DC, true);

152

153 // Set up SPI

154 uint baud = spi_init (SPI_ID, BAUD_RATE);

155 printf ("SPI @ %u Hz\n", baud);

156 spi_set_format (SPI_ID, DATA_BITS, SPI_CPOL_1, SPI_CPHA_1,

157 SPI_MSB_FIRST);

158

159 // Set up the SPI pins

160 gpio_set_function(PIN_SCLK, GPIO_FUNC_SPI);

161 gpio_set_function(PIN_SDIN, GPIO_FUNC_SPI);

162

163 // Reset the display controller

164 gpio_put(PIN_RESET, false);

165 sleep_ms(100);

166 gpio_put(PIN_RESET, true);

167

168 // Initialize the display controller

169 // We will not use DMA for this
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170 gpio_put(PIN_SCE, false); // leave it selected

171 gpio_put(PIN_DC, false);

172 spi_write_blocking(SPI_ID, lcdInit, sizeof(lcdInit));

173 gpio_put(PIN_DC, true);

174 }

175

176 // Refresh the screen

177 void displayRefresh(int top, int bottom) {

178 // Make sure previous refresh is finished

179 while (!screenUpdated) {

180 tight_loop_contents();

181 }

182 screenUpdated = false;

183

184 // Switch buffer

185 screenDMA = 1 - screenDMA;

186

187 // Update data address in control block

188 control_blocks[0].data = topScreen[top];

189 control_blocks[1].data = mainScreen[screenDMA];

190 control_blocks[2].data = bottomScreen[bottom];

191

192 // Position data pointer at start of memory

193 // (also not using DMA for this)

194 gpio_put(PIN_DC, false);

195 spi_write_blocking(SPI_ID, lcdHome, sizeof(lcdHome));

196 gpio_put(PIN_DC, true);

197

198 // Start DMA

199 // Control channel will set the data channel transfers

200 dma_channel_set_read_addr(dma_chan_ctrl, &control_blocks[0],

201 true);

202 }

203

204 // Draw the next frame

205 const uint8_t masks[] = { 0xC0, 0xF0, 0x0C, 0x0F };

206 void drawFrame() {

207 int s = 1 - screenDMA;

208

209 // Copy previous screen

210 memcpy(mainScreen[s], mainScreen[screenDMA],

211 sizeof(mainScreen[0]));

212
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213 // Erase a random rectangle

214 int n = (rand() % 16) + 2;

215 int x = rand() % (LCD_DX - n);

216 int y = rand() % 4;

217 uint8_t mask = masks[rand() % 4];

218 for (int i = 0; i < n ; i ++) {

219 mainScreen[s][LCD_DX*y+x+i] &= mask;

220 }

221

222 // Draw a random rectangle

223 n = (rand() % 16) + 2;

224 x = rand() % (LCD_DX - n);

225 y = rand() % 4;

226 mask = masks[rand() % 4];

227 for (int i = 0; i < n ; i ++) {

228 mainScreen[s][LCD_DX*y+x+i] |= mask;

229 }

230 }

231

232 // Main Program

233 int main() {

234 // Init screen

235 initStrips();

236 initDMA();

237 displayInit();

238 displayRefresh(0, 0);

239

240 // Main loop

241 int frameCounter = 0;

242 int border = 0;

243 while (1) {

244 sleep_ms(100);

245 drawFrame();

246 displayRefresh(border & 1, (border & 2) >> 1);

247 if (++frameCounter == 100) {

248 // Change borders from time to time

249 frameCounter = 0;

250 border = (border + 1) & 3;

251 }

252 }

253 }
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Some highlights on the DMA usage in this example:

• In initDMA() we allocate two DMA channels. dma_chan_data will transfer the data from
the RP2040 memory to the SPI peripheral. dma_chan_ctrl will program dma_chan_data by
transferring the read address and transfer count from a control block.

• In displayRefresh() we fill in the addresses in the control blocks.
• The end of the control block is a null trigger. We set up an interrupt to occur when the null
trigger is reached.

• Alas, when the interrupt occurs data is still in the SPI FIFO for transmission, so we cannot turn
off the select signal of the display at this time. To simplify things, I just left it on.



Clock Generation, Timer, Watchdog
and RTC
In this chapter we are going to see the clock sources available to the RP2040 and three peripherals
that use them:

• Timer provides a 64 bit microsecond counter that can be used to generate interrupts.
• Watchdog restarts the RP2040 if it is not periodically reset by software (used to recover from
software malfunction).

• RTC (Real Time Clock) keeps time in day, month, year, hour, minute and second format (as
long as the RP2040 is powered). Can generate an interrupt at a certain date and time.

Clock Generation

Overview

The RP2040 has a very flexible clock subsystem, with many options of clock sources. The actual
clock used by the processors and peripheral comes from a clock generator that selects one of the
sources and divide it. Many clock generators can be disabled in SLEEP mode to save power.
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The Clock Subsystem

This table shows what output of the clock generators drive each subsystem:

Subsystem Clock Usual Source
Processor f_sys System PLL
I2C f_sys System PLL
USB clk_usb USB PLL
ADC clk_adc USB PLL
RTC clk_rtc XOSC
Timers clk_ref XOSC
Watchdog clk_ref XOSC
SPI clk_peri System PLL or XOSC
UART clk_peri System PLL or XOSC

ROSC - Ring Oscillator

The ROSC is an on-chip source that requires no external component and uses little power. But it is
not accurate: the typical value is 6MHz, but can change due to fabrication on environment changes.
It is expected to be in the range of 4 to 8 MHz, but is only guaranteed to be between 1.8 and 12 MHz.

This source starts at power up and is used in the initial boot stages. It can be powered down, if first
you switch its users to another source.
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Should you want to use the ROSC as your main clock source, the RP2040 datasheet has some tips in
how to mitigate its wide range.

XOSC - Crystal Oscillator

The XOSC can be used to get a precise and stable clock and is the preferred choice. It requires an
external crystal in the range 1 to 15MHz (12MHz is the value in the reference design and in the
Raspberry Pi Pico). This clock can be fed into the PLLs to generate higher frequencies.

In typical use, the XOSCwill drive the clock for the timer, watchdog and RTC (clk_ref and clk_rtc).

External Clocks

Up to three external clocks can be connected to pins GPIO0, GPIO1 and XIN. This inputs are limited
to 50MHz but can be fed into the PLLs to generate higher frequencies.

This option is interesting if your board has a precise clock signal that can be used, as it saves the
cost of an external crystal.

PLLs

The PLLs (Phase Locked Loops) in the RP2040 canmultiply the frequency of the XOSC (or an external
clock at XIN) to generate a faster clock.

There are two PLLs in the RP2040. The USB PLL is typically used to generate the 48MHz clock
needed for the USB and ADC. The System PLL is used to generate clk_sys.

Depending on the needs for UART and SPI, clk_peri will be driven from XOSC or System PLL.

The System PLL will usually run at 125MHz, but can be increased to overclock the processor, or
reduced to lower power consumption.

Clock Output

Up to four clocks can be outputted in GPIO pins. This can be used to provide a clock signal to other
devices or for testing purposes.

Only GPIOs 21, 23, 24 and 25 can be used for clock output. In the Raspberry Pi Pico only GPIO 21 is
available (GPIO25 is connected to the LED, GPIO 23 and 24 are not brought to the connector).

Frequency Counter

The frequency counter can be used to measure the frequency of a source by counting the clock edges
seen over a test interval. The interval is defined by counting cycles of clk_ref (which should have
a known and stable frequency).

There are sixteen options of interval. A short interval means that the test will be fast, but imprecise.
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Option Test Interval Accuracy
0 1 μs 2048 kHz
1 2 μs 1024 kHz
2 4 μs 512 kHz
3 8 μs 256 kHz
4 16 μs 128 kHz
5 32 μs 64 kHz
6 64 μs 32 kHz
7 125 μs 16 kHz
8 250 μs 8 kHz
9 500 μs 4 kHz
10 1 ms 2 kHz
11 2 ms 1 kHz
12 4 ms 500 Hz
13 8 ms 250 Hz
14 16 ms 125 Hz
15 32 ms 62.5 Hz

Clock Generator Multiplexers

The selection of the source for a clock generator is made by one or two multiplexers. A multiplexer
is a circuit that has two sets of inputs (the sources and the source selection) and one output; the
output receives the signal in the selected source.

All clock generators have what the datasheet and SDK calls an auxiliary (aux) mux. This mux will
glitchwhen the source is changed (that is, for an instant, the output will not be equal to the previous
nor the new signal). This glitch can cause problems to the circuit that uses the clock.

For sources that have only an aux mux, the clock should be stopped (disabled) while the source is
changed.

The generators for clk_ref (used for timer and watchdog) and clk_sys (used for the processors)
have also a glitchless mux, because this clocks cannot be stopped. This second mux is after the aux
mux, as shown bellow for the clk_sys generator:
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System Clock Muxes

Suppose your running clk_sys from XOSC and want to change it to System PLL. If you change
directly in the aux mux, a glitch can stop (or confuse) the processors. So, first you change the source
to clk_ref, using the glitchless mux. Then you change the source in the auxmux. Finally you change
again the glitchless mux to select the output of the aux mux.

There are also other precautions when changing the clock source or its frequency, like waiting for
the output to stabilize. Thankfully the SDK has a function that to do this the right way.

Selected SDK Functions

This functions are in the library hardware_clocks.

The clock_index enum is used to select a clock:

• clk_gpout0, clk_gpout1, clk_gpout2 and clk_gpout3 are the clocks that can be outputted
through GPIO pins.

• clk_ref is the clock used in the timer and watchdog
• clk_sys is the clock for the processor and I2C
• clk_peri is the clock for SPI and UART
• clk_usb is the clock for USB
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• clk_adc is the clock for ADC
• clk_rtc is the clock for RTC

void clocks_init (void)

This function initializes the library and must be called before the other functions.

bool clock_configure (enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t

src_freq, uint32_t freq)

Configures the clk_index clock to operate at frequency freq using sources src and auxsrc. If the
generator for the clock has only an aux mux, the source can be passed in src and aux_src can be
zero. If the generator for the clock has two muxes, src aplies to the glithless and auxsrc to the aux
mux. The values for these parameters can be found in the official documentation. src_freq is the
frequency of the source and is used by the function when waiting for the output of the muxes to
stabilize.

The function returns false if the request cannot be fulfilled.

void clock_stop (enum clock_index clk_index)

Stops a clock. Used for power saving, make sure that you are not using the clock that you are
stopping.

uint32_t clock_get_hz (enum clock_index clk_index)

Return the current frequency (in hertz) for a clock. The returned value will be from the most recent
clock_configure() or clock_set_reported_hz() call.

void clock_set_reported_hz (enum clock_index clk_index, uint hz)

Set the current frequency returned by clock_get_hz() but does not change its frequency. This only
makes sense if the clock frequency was changed from outside clock_configure().

uint32_t frequency_count_khz (uint src)

Uses the Frequency Counter to measures a clock’s frequency. Uses a test interval of 2us with a result
accuracy of +/- 1KHz.

void clock_gpio_init (uint gpio, uint src, uint div)

Configure a clock to be outputted in a GPIO pin. gpiomust be 21, 23, 24 or 25. src is the clock source
and div the divisor to be applied.

bool clock_configure_gpin (enum clock_index clk_index, uint gpio, uint32_t src_freq,

uint32_t freq)

Configure a clock to use as source a GPIO pin.gpiomust be 20 or 22. src_freq is the input frequency
and freq is the desired frequency for the clock.

The function returns false if the request cannot be fulfilled.
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Example

In this example (based on the SDK clock examples) we use the frequency counter to measure some
of the clocks. Then we change the source for clock_sys to USB PLL (dropping the processor clock
down to 48MHz) and do the measuring again. This example also outputs the ROSC clock, divided
by 10, through GPIO 21.

Clocks Example

1 /**

2 * @file clocksdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the Clocks API

5 * Based on the hello_48MHz and hello_gpout SDK examples

6 * @version 0.1

7 * @date 2022-07-14

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include "pico/stdlib.h"

15 #include "hardware/pll.h"

16 #include "hardware/clocks.h"

17 #include "hardware/structs/pll.h"

18 #include "hardware/structs/clocks.h"

19

20 // Use the frequency counter to measure the various clocks

21 void measure_freqs(void) {

22 uint f_pll_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY\

23 );

24 uint f_pll_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY\

25 );

26 uint f_rosc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_ROSC_CLKSRC);

27 uint f_clk_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_SYS);

28 uint f_clk_peri = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_PERI);

29 uint f_clk_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_USB);

30 uint f_clk_adc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_ADC);

31 uint f_clk_rtc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_RTC);

32

33 printf("pll_sys = %dkHz\n", f_pll_sys);

34 printf("pll_usb = %dkHz\n", f_pll_usb);

35 printf("rosc = %dkHz\n", f_rosc);
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36 printf("clk_sys = %dkHz\n", f_clk_sys);

37 printf("clk_peri = %dkHz\n", f_clk_peri);

38 printf("clk_usb = %dkHz\n", f_clk_usb);

39 printf("clk_adc = %dkHz\n", f_clk_adc);

40 printf("clk_rtc = %dkHz\n", f_clk_rtc);

41

42 stdio_flush(); // make sure output is sent before continuing

43 }

44

45 int main() {

46 stdio_init_all();

47 while (!stdio_usb_connected()) {

48 sleep_ms(100);

49 }

50

51 printf("Clocks Example\n\n");

52

53 // Output ROSC/10 through GPIO21

54 clock_gpio_init(21, CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_ROSC_CLKSRC, 10);

55 printf("ROSC/10 now at GPIO21\n\n");

56

57 // Measure frequencies

58 measure_freqs();

59

60 // Change the source of clk_sys to the USB PLL

61 // which has a source frequency of 48MHz

62 clock_configure(clk_sys,

63 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,

64 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,

65 48 * MHZ,

66 48 * MHZ);

67

68 // No need for System PLL now

69 pll_deinit(pll_sys);

70

71 // In case stdio is through UART, we need to correct clk_peri and reinit stdio

72 clock_configure(clk_peri,

73 0,

74 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,

75 48 * MHZ,

76 48 * MHZ);

77 stdio_init_all();

78
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79 printf("\nNow operating at 48MHz.\n");

80 measure_freqs();

81

82 // That's all

83 while (true) {

84 sleep_ms(100);

85 }

86

87 return 0;

88 }

Here is a sample output:

Sample output of the clocks example

Some observations:

• ROSC was around 5.2MHz, somewhat afar from the 6MHz “typical value”, but inside the 4 to
8 MHz “expected range”.

• After turning the System PLL off the frequency measured was zero.
• The nominal frequency for clk_rtc is 46875Hz, the frequency_count_khz() routine is not very
appropriate for measuring it as it has an accuracy of +/- 1KHz.

Timer

The timer peripheral is a 64-bit microsecond counter that can be read and used for up to four alarms.

The time base for the timer is generated by the Watchdog from the the reference clock (that is
normally derived from XOSC).

The 64-bit counter can count for thousand of years before overflowing. For all practical uses it
will continuously increase during the execution of the software (what is called monotonic). This
simplifies tasks like computing a elapsed time and waiting for a future time.
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While the timer is read through two 32-bit registers, you do not need to worry about one register
changing while you are reading the other, as long as you read the low part first. When the low part
is read, the high part is stored (latched) and used for the following reading of the high part.

The four alarms generates interrupts on a match of the lower 32-bits of the counter to the alarm
value. Since 2³² microseconds is about 72 minutes, the alarms should be used for times between tens
ofmicroseconds to one hour. Times shorter than tenmicrosecondswill have a significant imprecision.
The PIO can be used for small times, as it can run at the system clock. For longer times the RTC can
be used.

Selected SDK Functions

The timer functions are in hardware_timer. There is a simple control of the use of the alarms.

static uint32_t time_us_32 (void)

Returns the lower 32 bits of the timer’s counter.

uint64_t time_us_64 (void)

Returns the full 64 bits of the timer’s counter.

void busy_wait_us_32 (uint32_t delay_us)

This routine will return after delay_us microseconds. The processor will be in a loop while waiting.

void busy_wait_us (uint64_t delay_us

This routine will return after delay_us microseconds. The processor will be in a loop while waiting.

void busy_wait_ms (uint32_t delay_ms)

This routine will return after delay_ms milliseconds. The processor will be in a loop while waiting.

void busy_wait_until (absolute_time_t t)

This routine will return when the counter reaches t. The processor will be in a loop while waiting.

static bool time_reached (absolute_time_t t)

Returns true if the counter is equal or greater t.

void hardware_alarm_claim (uint alarm_num)

Claims the use of an alarm. If the alarm is claimed (in use), the software is stopped by an assert.

void hardware_alarm_unclaim (uint alarm_num)

Frees an alarm for another use.

bool hardware_alarm_is_claimed (uint alarm_num)

Returns true is an alarm is in use (claimed).

void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)



Clock Generation, Timer, Watchdog and RTC 73

Sets the routine that will be called when an alarm expires and enables the interrupt. NULL disables
the interrupt.

bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)

Sets the time when the alarm will expire. Returns true if t is equal or greater the timer’s counter (it
is “in the past”).

void hardware_alarm_cancel (uint alarm_num)

Cancel an alarm.

pico_time Selected Functions

The functions in the previous section are low level and not particularly useful. The pico_time

routines (that are part of the pico_stdlib library) offers a higher level and more friendly routines.
It is divided in four modules: timestamp, sleep, alarm and repeating_timer.

timestamp

Instants in time (timestamps) are represented by the type absolute_time_t. This type hides the
actual type used (spoiler: its uint64_t) and distinguishes timestamps from other integers (like time
intervals). Timestamps are counted from “boot” (actually from the start of the hardware timer, but
you should treat it just as an arbitrary reference).

static uint64_t to_us_since_boot (absolute_time_t t)

static uint32_t to_ms_since_boot (absolute_time_t t)

This routines convert a timestamp into the number of microseconds and milliseconds.

static absolute_time_t get_absolute_time (void)

Returns a timestamp that corresponds to “now”.

static void update_us_since_boot (absolute_time_t *t, uint64_t us_since_boot)

Converts a count of microseconds since boot (for example, the current value of the timer) into a
timestamp.

static absolute_time_t delayed_by_us (const absolute_time_t t, uint64_t us)

static absolute_time_t delayed_by_ms (const absolute_time_t t, uint32_t ms)

Add a number of microseconds or milliseconds to a timestamp.

sleep

The sleep functions delay execution in a low power state.

void sleep_until (absolute_time_t target)

Sleep until the specified timestamp.

void sleep_us (uint64_t us)

void sleep_ms (uint32_t ms)
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Sleep for a number of microseconds or milliseconds.

alarm

This routines build upon the Timer alarms, by creating alarm pools for each timer alarm. Each alarm
pool can have multiple concurrent alarms.

The default pool uses timer alarm number 3 and supports up to 16 alarms.

void alarm_pool_init_default (void)

Initializes the default alarm pool.

alarm_pool_t * alarm_pool_get_default (void)

Returns a pointer to the default alarm pool.

alarm_pool_t * alarm_pool_create (uint hardware_alarm_num, uint max_timers)

Creates an alarm pool, using hardware_alarm_num timer alarm and supporting up to max_timers

alarms

uint alarm_pool_hardware_alarm_num (alarm_pool_t *pool)

Returns the number of the timer alarm used by an alarm pool.

void alarm_pool_destroy (alarm_pool_t *pool)

Destroy an alarm pool, freeing the associate timer alarm.

alarm_id_t alarm_pool_add_alarm_at (alarm_pool_t *pool, absolute_time_t time, alarm_-

callback_t callback, void *user_data, bool fire_if_past)

static alarm_id_t alarm_pool_add_alarm_in_us (alarm_pool_t *pool, uint64_t us, alarm_-

callback_t callback, void *user_data, bool fire_if_past)

static alarm_id_t alarm_pool_add_alarm_in_ms (alarm_pool_t *pool, uint32_t ms, alarm_-

callback_t callback, void *user_data, bool fire_if_past)

This routines add an alarm to an alarm pool. The callback routine will be called when the alarm
fires, receiving user_data as a parameter. The callback will be called from the timer interrupt routine,
normally in core 0. If the callback returns a non-zero value, the alarm will be re-triggered for value
microseconds after the current timestamp (if value is positive) or value microseconds after the
previous target (if value is negative).

If fire_if_past is true, the alarm will fire immediately if the target time has already passed.

The routines returns an id that identifies the alarm in the alarm pool. The id will be -1 if there is no
space in the alarm pool.

bool alarm_pool_cancel_alarm (alarm_pool_t *pool, alarm_id_t alarm_id)

Cancels an alarm.

repeating_timer
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This routines are similar to the alarm_ functions, but the library remembers the initial delay through
a repeating_timer_t structure.

bool alarm_pool_add_repeating_timer_us (alarm_pool_t *pool, int64_t delay_us,

repeating_timer_callback_t callback, void *user_data, repeating_timer_t *out)

static bool alarm_pool_add_repeating_timer_ms (alarm_pool_t *pool, int32_t delay_ms,

repeating_timer_callback_t callback, void *user_data, repeating_timer_t *out)

This routines add a repeating alarm in an alarm pool. callbackwill be called at every delay interval,
until it returns false. If delay is positive, it will be counted from the actual timestamp of the return
of the callback, if its negative it will be counted from the previous target.

This functions return false if there is no space in the alarm pool.

static bool add_repeating_timer_us (int64_t delay_us, repeating_timer_callback_t

callback, void *user_data, repeating_timer_t *out)

static bool add_repeating_timer_ms (int32_t delay_ms, repeating_timer_callback_t

callback, void *user_data, repeating_timer_t *out)

Same as alarm_pool_add_repeating_ but using the defaul alarm pool.

bool cancel_repeating_timer (repeating_timer_t *timer)

Cancels a repeating timer.

Example

The main objective of this example is to show the use of low level timer functions, but it also uses a
few of the pico_time routines. The other examples in this book uses only pico_time when there is
a need for timer functions.

Timer Example

1 /**

2 * @file ctimerdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the Timer

5 * @version 0.1

6 * @date 2022-07-14

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include "pico/stdlib.h"
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15 #include "hardware/timer.h"

16

17 #define ALARM_NO 1

18

19 static volatile bool fired;

20

21 // Alarm callback routine

22 void rotAlarm(uint alarm_num) {

23 printf ("Alarm %d fired\n");

24 fired = true;

25 }

26

27 // Main program

28 int main() {

29 stdio_init_all();

30 while (!stdio_usb_connected()) {

31 sleep_ms(100);

32 }

33

34 printf("Timer Example\n\n");

35

36 // Reading the timer a few times

37 for (int i = 0; i < 5; i++) {

38 printf("Timer: %llu\n", time_us_64());

39 busy_wait_us_32(rand() % 10000); // wait a random time 0 to 9,999 us

40 }

41 printf ("\n");

42

43 // Set up the alarm

44 hardware_alarm_claim(ALARM_NO);

45 hardware_alarm_set_callback(ALARM_NO, rotAlarm);

46

47 // Wait for the alarm at random times

48 while (true) {

49 fired = false;

50 uint32_t delay = 1000 * (1 + rand() % 30); // 1 to 30 sconds

51 absolute_time_t now;

52 update_us_since_boot(&now, time_us_64());

53 absolute_time_t target = delayed_by_ms(now, delay);

54 hardware_alarm_set_target(ALARM_NO, target);

55 printf ("Waiting for %llu (delay %us)\n", to_us_since_boot(target), delay/1\

56 000);

57 while (!fired) {
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58 tight_loop_contents();

59 }

60 printf("Timer: %llu\n\n", time_us_64());

61 }

62

63 return 0;

64 }

Watchdog

A watchdog is a common microcontroller feature. Its objective is to put the system in a known state
(by reseting it) should the firmware misbehaves and “stuck” at some point of the code.

The watchdog is implemented as a counter that, when enabled, will continually decrements and
reset the microcontroller when it reaches zero. To avoid the reset, the software has to re-trigger it
periodically before the reset.

The clock for the RP2040’s watchdog is clk_tick, the same as for the timer, and it is generated from
clk_ref. For precision, the clk_ref itself should be configured to use the Crystal Oscillator. The
SDK initializes the clocks so that tick is nominally 1us (assuming a 12MHz crystal).

At the hardware level there are a few details that are abstracted by the SDK functions:

• The re-trigger of the watchdog is done by reloading the counter. The SDK stores internally the
value specified when the watchdog is enabled.

• Due to a bug in the hardware, the RP2040 decrements the counter twice at each tick. The SDK
functions take this into account.

• The watchdog includes eight 32-bit scratch registers. These registers are cleared at power up or
external reset but keep their values in case of a reset trigged by the watchdog. These registers
are used by the Bootrom code (the code that is in the RP2040 Rom and is executed before
anything else).

To make good use of the watchdog you have to choose carefully where you re-trigger it. On one
hand you must assure that the watchdog will not trip on normal operation and at the other you
want it to reset even if the software is running but not doing some important tasks.

Most softwares will simply re-trigger the watchdog in the main loop. This gives a reasonable
protection, but only to bugs that stop the execution of the main loop. Care must also be taken with
special situations where the main loop is not execute for some time, the watchdog must be re-trigger
periodically at other places in this situations.
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Selected SDK Functions

void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

Initialize and enable the watchdog. delay_ms is the time in milliseconds before the watchdog resets
the RP2040. If pause_on_dbug is true, the watchdog will be disable when a debugger is stepping
through code.

The watchdog counter is 24 bits wide. As it is decremented twice each 1us tick, the maximum value
for delay_ms is 8388 (a little more than 8 seconds).

Notice that the SDK does not include a watchdog_disable() function.

void watchdog_update (void)

Re-triggers the watchdog, by reloading the value specified in watchdog_enable()

bool watchdog_caused_reboot (void)

Returns true if the watchdog caused a reboot.

uint32_t watchdog_get_count (void)

Returns the number of microseconds before the watchdog resets the microcontroller.

Example

In this example we first check if the program started from a normal reset or a watchdog reset. Then
we enable the watchdog with a 100ms timeout and enter a loop where we sleep a random number
of milliseconds. This random number is between 0 and 100, imprecision in the sleep routine and the
time spent on printf() will cause a watchdog reset after a few seconds.

Watchdog Example

1 /**

2 * @file watchdogdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the Watchdog

5 * @version 0.1

6 * @date 2022-07-14

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include "pico/stdlib.h"

15 #include "hardware/watchdog.h"
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16

17 int main() {

18 // Init sdio

19 stdio_init_all();

20 while (!stdio_usb_connected()) {

21 sleep_ms(100);

22 }

23

24 printf("Watchdog Example\n\n");

25 if (watchdog_caused_reboot()) {

26 printf("Rebooted by Watchdog!\n");

27 sleep_ms(500);

28 } else {

29 printf("Clean boot\n");

30 }

31

32 // Enable the watchdog with a 100ms timeout

33 watchdog_enable(100, false);

34

35 // Lets play watchdog roulet!

36 while (true) {

37 printf (".");

38 sleep_ms(rand() % 101); // 0 to 100ms

39 watchdog_update();

40 }

41

42 return 0;

43 }

If you using stdio through USB, the reset will abort the communication. You will have to restart it
to confirm that it was caused by the watchdog.

RTC

The Real Time Clock makes it easy to maintain the current date and time while the RP2040 is
powered.

Its important to remember that the RTC does not generate or compute information. The firmware
is responsible for loading a valid date and time; the RTC will update it each second, following the
normal time and date sequence (including, partially, leap years).

The RTC updates seven fields each second:
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• Year: from 0 to 4095
• Moth: from 1 to 12
• Day: from 1 to 28, 29, 30 or 31
• Day of the Week: from 0 to 6
• Hour: from 0 to 23
• Minute: from 0 to 59
• Seconds: from 0 to 59

Again, it is up to the firmware to load valid values. There is no guarantee of what will happen if
illegal values are loaded.

There is no association between the day of the week and the date, the RTC will increment the value
each day, wrapping from 6 to 0. The SDK adopts a convention that 0 is Sunday.

Years that aremultiple of four are considered leap years and February 28will be followed by February
29 instead of March 1. Notice that the full leap year rule states that year multiple of 100 are not leap
unless it is multiple of 400. If you want to use the full rule you need to manually turn off the RTC
leap year check in the exceptions to the multiple of 4 rule.

The RTC can work as long as the RP2040 is powered and it has a clock. You can use the SLEEP or
DORMANT states (see chapter 4) to stop the processors and reduce the power consumption and
power the RP2040 through an external battery circuit to maintain the clock, date and time while the
main power source is not available.

The RTC has an alarm that can match on any combination of the seven fields. For example, we can
set the alarm to occur at 16:01:23 regardless of the date. The SDK will keep the alarm enabled by
default when not all fields are specified, so if you specify just 16:01 it will occur at every second
while hour is 16 and minute is 1.

Selected SDK Functions

This functions are in the library hardware_rtc.

void rtc_init (void)

Initializes the RTC, setting up its clock.

bool rtc_set_datetime (datetime_t *t)

Sets the RTC to the date and time provided. Returns false it date/time invalid.

bool rtc_get_datetime (datetime_t *t)

Fills a datetime_t structure with the current date and time in the RTC. Returns false if RTC is not
running.

bool rtc_running (void)

Returns true if the RTC is running.
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void rtc_set_alarm (datetime_t *t, rtc_callback_t user_callback)

Sets the alarm’s date and time. Fields with -1 in t will not be used in the match. user_callback will
be called when the alarm is reached. The alarm is enabled.

If any field in t is -1 the alarm is re-enabled before calling user_callback. If that is not what you
want, call rtc_disable_alarm() in user_callback.

void rtc_enable_alarm (void)

Enables the alarm.

void rtc_disable_alarm (void)

Disables the alarm.

Example

In this example the RTC is programmed with a data and time typed through the standard input.
Them the alarm is exercised using random intervals.

RTC Example

1 /**

2 * @file rtcdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the Real Time Clock

5 * Based on the hello_48MHz and hello_gpout SDK examples

6 * @version 0.1

7 * @date 2022-07-14

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include <stdlib.h>

15 #include "pico/stdlib.h"

16 #include "pico/util/datetime.h"

17 #include "hardware/rtc.h"

18

19 static volatile bool fired;

20

21 // This rotine will be called when the alarm fires

22 static void alarm_callback(void) {

23 datetime_t dt;

24



Clock Generation, Timer, Watchdog and RTC 82

25 // Disable alarm

26 rtc_disable_alarm();

27

28 // Get the current time and convert it to a string

29 rtc_get_datetime(&dt);

30 char datetime_buf[256];

31 char *datetime_str = &datetime_buf[0];

32 datetime_to_str(datetime_str, sizeof(datetime_buf), &dt);

33

34 // Inform alarm fired

35 printf("Alarm fired at %s\n", datetime_str);

36 stdio_flush();

37 fired = true;

38 }

39

40

41 // Main Program

42 int main() {

43 stdio_init_all();

44 while (!stdio_usb_connected()) {

45 sleep_ms(100);

46 }

47

48 printf("RTC Example\n");

49

50 // Initializes the RTC

51 datetime_t dt;

52 rtc_init();

53 while (true) {

54 int dig[14];

55 int n = 0;

56 int c;

57 printf("Enter date and time as MMDDYYYYHHMMSS\n");

58 while (n < 14) {

59 c = getchar_timeout_us(1000);

60 if ((c >= '0') && (c <= '9')) {

61 putchar_raw(c);

62 dig[n++] = c - '0';

63 }

64 }

65 printf("\n");

66 dt.month = dig[0]*10+dig[1];

67 dt.day = dig[2]*10+dig[3];
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68 dt.year = dig[4]*1000+dig[5]*100+dig[6]*10+dig[7];

69 dt.dotw = 0;

70 dt.hour = dig[8]*10+dig[9];

71 dt.min = dig[10]*10+dig[11];

72 dt.sec = dig[12]*10+dig[13];

73 if (rtc_set_datetime(&dt)) {

74 break;

75 }

76 }

77

78 // Main loop: set alarm and wait

79 dt.month = -1;

80 dt.day = -1;

81 dt.year = -1;

82 dt.dotw = -1;

83 dt.hour = -1;

84 while (true) {

85 fired = false;

86 dt.min = (dt.min + 1 + (rand() % 5)) % 60;

87 rtc_set_alarm(&dt, alarm_callback);

88 printf ("Alarm set for xx:%02d:%02d\n", dt.min, dt.sec);

89 while (!fired) {

90 // do nothing

91 }

92 }

93

94 return 0;

95 }
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GPIO Overview

Of the 56 pins in the RP2040, 36 are capable of General Purpose Input Output (GPIO). This pins
are grouped in two banks, the User bank and the QSPI bank. As the latter is used to connect the
external Flash memory, we have the 30 pins in the user bank (GPIO00 to GPIO29) available for our
use.

All 30 GPIOs can be used for digital input and output. They can also be used for other functions by
attaching them to other internal peripherals:

• One of 2 PIOs (Programmable Input Output)
• One of 2 UARTs (Universal Asynchronous Receiver and Transmitter)
• One of 2 SPIs
• One of 2 I2Cs
• One of 16 PWMs (Pulse Width Modulation)
• Clock input or output
• USB VBUS management
• External interrupt requests

GPIO26 to GPIO29 can also be connected to the ADC (Analog to digital converter) inputs.

A GPIO register allow to select the function of a pin, that is, what peripheral will:

• Control the output enable (select if the pin is an output or input)
• Control the output level (used only if the output is enabled)
• Receive the pin input

GPIO registers can change (override) this signals, by inverting, forcing high or forcing low.

The figure bellow illustrate this capabilities:
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GPIO Block Diagram

The three signals (output enable, output level and input) go to the I/O PAD. The PAD represents the
electrical interface between the internal logic and the actual pin.

Function Select

Each GPIO pin has a CTRL register associated to it. This register controls the inversion or overriding
of the signals and selects the function. Each pin can have up to nine functions (not counting ADC,
this is not controlled here).

The following tables shows the options available for each pin.
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GPIO F1 F2 F3 F4 F5
0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO
1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO
2 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO
3 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO
4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO
5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO
6 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO
7 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO
8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO
9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO
10 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO
11 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO
12 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO
13 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO
14 SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO
15 SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO
16 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO
17 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO
18 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO
19 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO
20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO
21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO
22 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO
23 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO
24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO
25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO
26 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO
27 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO
28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO
29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO

GPIO F6 F7 F8 F9
0 PIO0 PIO1 USB OVCUR DET
1 PIO0 PIO1 USB VBUS DET
2 PIO0 PIO1 USB VBUS EN
3 PIO0 PIO1 USB OVCUR DET
4 PIO0 PIO1 USB VBUS DET
5 PIO0 PIO1 USB VBUS EN
6 PIO0 PIO1 USB OVCUR DET
7 PIO0 PIO1 USB VBUS DET
8 PIO0 PIO1 USB VBUS EN
9 PIO0 PIO1 USB OVCUR DET
10 PIO0 PIO1 USB VBUS DET
11 PIO0 PIO1 USB VBUS EN
12 PIO0 PIO1 USB OVCUR DET
13 PIO0 PIO1 USB VBUS DET



GPIO, Pad and PWM 87

GPIO F6 F7 F8 F9
14 PIO0 PIO1 USB VBUS EN
15 PIO0 PIO1 USB OVCUR DET
16 PIO0 PIO1 USB VBUS DET
17 PIO0 PIO1 USB VBUS EN
18 PIO0 PIO1 USB OVCUR DET
19 PIO0 PIO1 USB VBUS DET
20 PIO0 PIO1 CLOCK GPIN0 USB VBUS EN
21 PIO0 PIO1 CLOCK GPOUT0 USB OVCUR DET
22 PIO0 PIO1 CLOCK GPIN1 USB VBUS DET
23 PIO0 PIO1 CLOCK GPOUT1 USB VBUS EN
24 PIO0 PIO1 CLOCK GPOUT2 USB OVCUR DET
25 PIO0 PIO1 CLOCK GPOUT3 USB VBUS DET
26 PIO0 PIO1 USB VBUS EN
27 PIO0 PIO1 USB OVCUR DET
28 PIO0 PIO1 USB VBUS DET
29 PIO0 PIO1 USB VBUS EN

Selected SDK Functions

This functions are related to the function selection, they are in the library hardware_gpio:

void gpio_set_function (uint gpio, enum gpio_function fn)

Selects the function of a pin. gpio_function has the following options:

• GPIO_FUNC_XIP Flash execute in place, not used in the User bank
• GPIO_FUNC_SPI SPI0 or SPI1
• GPIO_FUNC_UART UART0 or UART1
• GPIO_FUNC_I2C I2C0 or I2C1
• GPIO_FUNC_PWM PWM
• GPIO_FUNC_SIO plain GPIO (digital input/output): software control via SIO (Single-Cycle IO)
• GPIO_FUNC_PIO0, GPIO_FUNC_PIO1 PIO
• GPIO_FUNC_GPCK Clock Input or Output
• GPIO_FUNC_USB USB VBUS management
• GPIO_FUNC_NULL pin disabled

When using this function, check in the previous table what functions are available, the instance
of the peripheral (for example, SPI0 or SPI1) and what peripheral signal is connected (for example,
MISO, MOSI, SCK or CS for SPI).

enum gpio_function gpio_get_function (uint gpio)

Returns the current function of a pin.
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PADs

Each pin has a PAD, an electrical interface between the internal logic and the actual pin. A logical
view of it is shown bellow:

PAD Interface

The PAD has many configurations, controlled by registers:

• Slew rate controls how fast a pin changes state
• Drive strength controls how “strong” the signal is (more about that soon)
• We can enable or disable pull-up and pull-down resistors.
• We can enable or disable the input buffer
• We can enable or disable the schmitt trigger function on the input buffer. When enabled,
different voltage levels are used detecting changes in the input form low to high and from
high to low. This helps ignore small changes in the input signal

The graph bellow shows the effect of the drive strength configuration:
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How Drive Strength Affects Output

In other words, a higher drive strength result in an output voltage closer to ideal if more current
flows through the pin. Independent of this configuration, themaximum sum of current of all GPIO
pins is 50 mA. The default drive strength is 4 mA.

While it may be tempting to set all pins to maximum strength, that is not recommended. First it is
useless, as there is the 50 mA overall limit. Second if the load in a pin is capacitive, a higher strength
will mean a higher current when the output is changed from low to hight. When designing your
application, start by summing up the currents for the less demanding pins (the one if 2mA or less).
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Then compare what is left of the 50mA “budget” with what the other pins need and decide if you
can use higher drive strength for them or use external transistors.

The input buffer has two functions: provide a high input impedance (to reduce the current into the
pin and avoid to affect the voltage at the input) and to decide whether this voltage is low or high
(generating the Input Data signal). The Input Enable signal can disable the buffer when we are using
the pin for analog input or we are not using it and want to reduce power consumption.

The Schmitt Trigger, if active, introduces a hysteresis into the decision by using different decision
values for low to high and high to low transitions. This reduces changes in the input value when the
voltage at the pin makes small changes around the limit between low and high level.

The RP2040 provides for pull-up and pull-down resistors (with values somewhere between 50k and
80k), These resistor are useful to guarantee a known level if a pin is open. One common example is
using a switch that connects a pin to ground or leave it open. By enabling the pull-up resistor we
will read 1 when the switch is open and 0 when it is closed. There are many components that have
outputs that work like (what is called, often not precisely, as an open collector output).

Selected SDK Functions

The C/C++ SDK has many functions to configure the PADs in the library hardware_gpio.

Pull-up and Pull-down control

static void gpio_pull_up (uint gpio)

Connects the pull-up resistor.

static void gpio_pull_down (uint gpio)

Connects the pull-down resistor.

void gpio_set_pulls (uint gpio, bool up, bool down)

Control both pull resistors, true means connect, false disconnect.

static void gpio_disable_pulls (uint gpio)

Disconnect both resistors.

Input buffer control

void gpio_set_input_enabled (uint gpio, bool enabled)

Enables or disables the input buffer.

void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)

Enables or disables the Schmitt Trigger function in the input buffer.

Slew-rate and Drive Strength control

void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)
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Selects the slew rate for a GPIO pin. The options for slew are GPIO_SLEW_RATE_SLOW and GPIO_SLEW_-

RATE_FAST.

void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)

Sets the drive strength for a GPIO pin. The options for drive are GPIO_DRIVE_STRENGTH_2MA, GPIO_-
DRIVE_STRENGTH_4MA, GPIO_DRIVE_STRENGTH_8MA and GPIO_DRIVE_STRENGTH_12MA.

Signals Override

This functions controls overriding the signals. The values used are:

• GPIO_OVERRIDE_NORMAL: no change in the signal
• GPIO_OVERRIDE_INVERT: signal is inverted
• GPIO_OVERRIDE_LOW: signal is forced low or disabled
• GPIO_OVERRIDE_HIGH: signal is forced high or enabled

void gpio_set_irqover (uint gpio, uint value)

Controls the overriding of the interrupt signal.

void gpio_set_outover (uint gpio, uint value)

Controls the overriding of the output signal.

void gpio_set_inover (uint gpio, uint value)

Controls the overriding of the input signal.

void gpio_set_oeover (uint gpio, uint value)

Controls the overriding of the output enable signal.

Digital Input and Output

The digital input and output function corresponds to the “GPIO” block in the figure we saw at the
overview. We have basically three 32 bit registers, where each bit is associated with a pin:

• GPIO_OUT determines the state (high or low) of the pins, if output is enabled and the pin is
configured for GPIO.

• GPIO_OE enables or disables output, if the pin is configure for GPIO.
• GPIO_IN indicates the digital state (high or low) of the pin, regardless of the pin function.

There is a single set of these registers, accessible by the two ARM cores (they are part of the SIO).
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Digital Output

Digital output is controlling the voltage of a pin, selecting between a low (0) and a high (1) value.

To use digital output we must:

• Select the GPIO function for the pin
• Configure the pad
• Set the initial output level
• Enable the output

These steps are normally done at initialization, as they do not need to be repeated when the level is
changed.

Digital Input

The objective of digital input is to check if a pin has a high or low voltage level applied.

The digital input is always available, even if the output is enabled. To use digital input we must:

• Select the GPIO function for the pin
• Configure the pad

Selected SDK Functions

The SDK includes functions to make changes in multiple pins (selected by a 32-bit mask). As a single
32 bit register controls all pins, this can be done very efficiently. You probably won’t have to access
the registers directly; if the SDK functions do not give you the performance you need, you should
use the PIO for the task.

When a mask is used, bit 0 corresponds to GPIO0, bit 1 to GPIO01 and so on until bit 29.

The following functions are in the hardware_gpio library.

Initialization

A pin must be initialized before other GPIO uses.

void gpio_init (uint gpio)

Initializes a pin for GPIO use. The pin is configured for input.

void gpio_init_mask (uint gpio_mask)

Initializes the pins select by mask for GPIO use. The pins are configured for input.

Pin Direction Control
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A pin should be initialized before calling this functions.

static void gpio_set_dir (uint gpio, bool out)

Sets the direction (out = true for output, false for input) of a GPIO pin.

static void gpio_set_dir_all_bits (uint32_t values)

Sets the direction of all pins. Each bit in values correspond to a pin (0 for input, 1 for output).

static void gpio_set_dir_masked (uint32_t mask, uint32_t value)

Sets the direction of the pins selected by mask. Each bit in value correspond to a pin (0 for input, 1
for output).

static void gpio_set_dir_out_masked (uint32_t mask)

Sets the direction of the pins selected by mask to output.

static void gpio_set_dir_in_masked (uint32_t mask)

Sets the direction of the pins selected by mask to input.

Digital Input

A pin should be initialized before calling this functions.

static bool gpio_get (uint gpio)

Get current state of a pin (0 for low, 1 for high).

static uint32_t gpio_get_all (void)

Get current state of all pins. Each bit in the result corresponds to a pin (0 for low, 1 for high).

Digital Output

A pin should be initialized and configure for output before calling this functions.

static void gpio_put (uint gpio, bool value)

Changes the state (value = true for high, false for low) of a GPIO pin.

static void gpio_put_all (uint32_t value)

Changes the state of all pins. Each bit in value correspond to a pin (0 for low, 1 for high).

static void gpio_put_masked (uint32_t mask, uint32_t value)

Changes the state of the pins selected by mask. Each bit in value correspond to a pin (0 for low, 1 for
high).

static void gpio_set_mask (uint32_t mask)

Sets (output high level) the GPIO pins selected by mask.

static void gpio_clr_mask (uint32_t mask)

Clear (output low level) the GPIO pins selected by mask.
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static void gpio_xor_mask (uint32_t mask)

Invert the state of the GPIO pins selected by mask

Examples

Digital Output Example

In this example we are going to drive a four digit seven segment common cathode display to
continuously count from 0000 to 9999.

Seven Segment Display Connection

Segments and the common cathodes are connected to GPIO pins. 1K resistors in each segment limit
its current to 1.4 mA (for the particular display used). The common cathode will supply up to the
sum of these currents (7 x 1.4 = 9.8 mA), so we need to configure a greater drive strength than the
default.

By using the gpio_put_masked function we can change all segments in a single call.
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Digital Output Example
1 /**

2 * @file gpio7segment.c

3 * @author Daniel Quadros

4 * @brief Example of using the GPIO in the RP2040 to drive a

5 * 4 digit 7 segment common anode display

6 * @version 0.1

7 * @date 2022-07-12

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include "pico/stdlib.h"

15 #include "hardware/gpio.h"

16 #include "hardware/sync.h"

17

18 // Display connections

19 // Segments: A:6 B:4 C:1 D:2 E:3 F:5 G:0

20 // Digits: 1:7 2:8 3:9 4:10

21 #define SEGMENTS_MASK 0x0007F

22 #define DIGITS_MASK 0x00780

23 #define DIGIT_1 7

24 #define DIGIT_2 8

25 #define DIGIT_3 9

26 #define DIGIT_4 10

27

28 // Digit selection GPIOs

29 int digit[] = { DIGIT_1, DIGIT_2, DIGIT_3, DIGIT_4 };

30

31 // What segments to turn on for each digit

32 int segments[] = { // AFB EDCG 0 = on, 1 = off

33 0x01, // 000 0001 --A--

34 0x6D, // 110 1101 F B

35 0x22, // 010 0010 --G--

36 0x28, // 010 1000 E C

37 0x4C, // 100 1100 --D--

38 0x18, // 001 1000

39 0x10, // 001 0000

40 0x2D, // 010 1101

41 0x00, // 000 0000

42 0x08 // 000 1000
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43 };

44

45 // Timer to update the display

46 struct repeating_timer timer;

47

48 // Value to show on display

49 volatile int value[4];

50

51 // Local routines

52 static void init(void);

53 static bool updateDisplay(struct repeating_timer *t);

54

55 // Main Program

56 int main() {

57 init();

58 while (1) {

59 // Increment value

60 int i = 3;

61 while ((i >= 0) && (value[i]==9)) {

62 value[i] = 0;

63 i--;

64 }

65 if (i >= 0) {

66 value[i]++;

67 }

68 // Wait 1 second

69 sleep_ms(1000);

70 }

71 return 0;

72 }

73

74 // Initialization

75 void init() {

76 int i;

77

78 // GPIO init

79 gpio_init_mask (SEGMENTS_MASK | DIGITS_MASK);

80 gpio_set_dir_masked (SEGMENTS_MASK | DIGITS_MASK, SEGMENTS_MASK | DIGITS_MASK);

81 for (i = 0; i < 4; i++) {

82 gpio_set_drive_strength (digit[i], GPIO_DRIVE_STRENGTH_12MA);

83 }

84

85 // Update a digit every 5 miliseconds
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86 add_repeating_timer_ms(5, updateDisplay, NULL, &timer);

87 }

88

89 // Update Display

90 bool updateDisplay(struct repeating_timer *t) {

91 static int nDig = 3;

92

93 gpio_put (digit[nDig], false); // turn off previous digit

94 nDig = (nDig + 1) & 3; // moves on to next digit

95

96 // set up segments

97 gpio_put_masked (SEGMENTS_MASK, segments[value[nDig]]);

98

99 gpio_put (digit[nDig], true); // turns on current digit

100

101 return true; // keep calling this routine

102 }

Digital Input Example

Here we are going to interface a 4x4 Matrix Keypad. This keypad has sixteen keys connected in a 4
row by 4 column matrix.

We will connect the 4 rows to GPIOs configured for output and the 4 columns to GPIOs configure
for input with pull-down resistor enabled.



GPIO, Pad and PWM 98

Keypad Connection

To detected the keys pressed, we will put a HIGH level in one row at a time and read the level at the
columns. A pressed key will read as HIGH and a released key will read as LOW.

The detected keys will be send through stdio.

Digital Input Example

1 /**

2 * @file gpio7segment.c

3 * @author Daniel Quadros

4 * @brief Example of using the GPIO in the RP2040 to

5 * read a 4x4 matrix keypad

6 * @version 0.1

7 * @date 2022-07-14

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include "pico/stdlib.h"

15 #include "hardware/gpio.h"

16 #include "hardware/sync.h"
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17

18 // GPIOs

19 // Rows: GPIO10 to GPIO13

20 // Columns: GPIO18 to GPIO21

21 #define nRows 4

22 #define nColumns 4

23 static const int firstRow = 10;

24 static const int firstColumn = 18;

25

26 // GPIO masks

27 static uint32_t rowMask;

28 static uint32_t columnMask;

29

30 // Timer to scan the keypad

31 static struct repeating_timer timer;

32

33 // Columns readings

34 static const int DEBOUNCE = 5;

35 static uint32_t kp_debounced[nRows];

36 static uint32_t kp_debouncing[nRows];

37 static int debunceCounter[nRows];

38

39 // Keys queue

40 #define sizeQueue 5

41 static int inQueue = 0, outQueue = 0;

42 static char queue[sizeQueue+1];

43

44 // Kepad decoding

45 static int decod[nRows][nColumns] = {

46 { '1', '2', '3', 'A' },

47 { '*', '0', '#', 'D' },

48 { '7', '8', '9', 'C' },

49 { '4', '5', '6', 'B' }

50 };

51

52 // Local routines

53 static uint32_t buildMask(int first, int n);

54 static void init(void);

55 static bool scanKeypad(struct repeating_timer *t);

56 static int readKey(void);

57

58 // Main Program

59 int main() {
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60 // Init stdio

61 stdio_init_all();

62 while (!stdio_usb_connected()) {

63 sleep_ms(100);

64 }

65

66 printf("\nKeypad GPIO Input Example\n");

67 init();

68 while (1) {

69 int key = readKey();

70 if (key != -1) {

71 printf ("Key = %c\n", key);

72 }

73 sleep_ms(1);

74 }

75 return 0;

76 }

77

78 // Utility routine to build a mask for 'n' pins starting from 'first'

79 static uint32_t buildMask(int first, int n) {

80 uint32_t mask = 0;

81 for (int i = 0; i < n; i++) {

82 mask |= 1 << (first+i);

83 }

84 return mask;

85 }

86

87 // Initialization

88 static void init() {

89

90 // Build masks

91 rowMask = buildMask (firstRow, nRows);

92 columnMask = buildMask (firstColumn, nColumns);

93

94 // GPIO init

95 gpio_init_mask (rowMask | columnMask);

96 gpio_set_dir_masked (rowMask | columnMask, rowMask);

97 for (int i = 0; i < nColumns; i++) {

98 gpio_pull_down(firstColumn+i);

99 }

100

101 // Scan keypad every 10 miliseconds

102 add_repeating_timer_ms(10, scanKeypad, NULL, &timer);
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103 }

104

105 // Scan the current row of the keypad

106 static bool scanKeypad(struct repeating_timer *t) {

107 static int curRow = firstRow;

108 static int countRow = 0;

109

110 // Turn on current row

111 gpio_put_masked (rowMask, 1 << curRow);

112

113 // Read columns

114 uint32_t current = gpio_get_all() & columnMask;

115

116 // Debounce

117 if (current != kp_debouncing[countRow]) {

118 // reading changed, start debouncing again

119 kp_debouncing[countRow] = current;

120 debunceCounter[countRow] = 0;

121 } else if (debunceCounter[countRow] <= DEBOUNCE) {

122 if (debunceCounter[countRow] == DEBOUNCE) {

123 // consider value stable

124 if (kp_debounced[countRow] != current) {

125 // Find key pressed

126 uint32_t dif = kp_debounced[countRow] ^ current;

127 int i = 0;

128 while (i < nColumns) {

129 uint32_t mask = 1 << (i+firstColumn);

130 if (((dif & mask) != 0) && ((current & mask) != 0)) {

131 // there is a change and key is pressed

132 break;

133 }

134 i++;

135 }

136 if (i < nColumns) {

137 int key = decod[countRow][i];

138 int aux = inQueue+1;

139 if (aux > sizeQueue) {

140 aux = 0;

141 }

142 if (aux != outQueue) {

143 queue[inQueue] = key;

144 inQueue = aux;

145 } else {
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146 // queue is full, ignore key

147 }

148 }

149 // uodate debounced status

150 kp_debounced[countRow] = current;

151 }

152 }

153 debunceCounter[countRow]++;

154 }

155

156 // Move on to next row

157 if (++countRow == nRows) {

158 countRow = 0;

159 curRow = firstRow;

160 } else {

161 curRow++;

162 }

163

164 return true; // keep executing

165 }

166

167

168 // Read a key from the key queue, returns -1 if queue empty

169 static int readKey(void) {

170 int key = -1;

171 if (inQueue != outQueue) {

172 key = queue[outQueue];

173 if (outQueue++ == sizeQueue) {

174 outQueue = 0;

175 }

176 }

177 return key;

178 }

The main action in this example is in scanKeypad(). This routine is called every 10 milliseconds
and reads one row each time. A two stage processing is done to discard short changes (debounce).
First the current reading is checked against the value that is been validated (kp_debouncing). Only
after reading the same value multiple times it is checked against the previous validated value (kp_-
debounced). Detected keys are put in a queue to be read by the main loop and sent through stdio.
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GPIO Interrupts

A digital signal can cause an interrupt through a GPIO pin on four events:

• Level high: the signal is at high level (1)
• Level low: the signal is at low level (0)
• Edge rise: the signal changes from low to high level (0 to 1)
• Edge fall: the signal changes from high to low level (1 to 0)

There are three possible destinations for GPIO interrupts: processor 0, processor 1 and dormant wake
(we will learn about this latter in this chapter).

GPIO interrupts are ORed per bank and destination. In the NVIC of each processor there are two
sources related to GPIO interrupts, one for BANK0 and one for BANK1 (QSPI). It is up to the handler
of the interrupt to figure out what GPIO pin triggered the interrupt.

Level Interrupts

Level interrupts have no memory: the interrupt is active as long as the signal has the selected level
and inactive as soon as the pin changes to the other level.

In a typical use, the interrupt signal is generated by some device indicating that it needs attention.

In a simple scenario, there is only one cause for the interrupt. The handler will do some interaction
with the device and it will change the signal. If the device does not change the signal during the
handling of the interrupt, it will have to be masked and re-enabled latter.

In a more complicated scenario, there are multiple causes for the interrupt and the interrupt will
keep firing until all causes have been treated. The handler may try to treat all causes in a single
interrupt or treat just one an let a new interrupt occur if there are others.

If the signal changes before the interrupt is treated the interrupt will be lost. In this case edge
interrupt may be a better option.

Edge Interrupts

Edge interrupts are saved in the INTR register. A write in the corresponding bit in the INTR register
clears the interrupt.

Again, one typical use is when the interrupt signal is generated by some device indicating that it
needs attention. The handler will attend the device; at some future point the signal will change to
the other level. Only when it changes a second time will a new interrupt be generated.

Things can get complicated if there are multiple causes for the interrupt or if a new interrupt needs
to be generated while the interrupt is disabled or been treated, in these cases level interrupt may be
a better option.



GPIO, Pad and PWM 104

Another typical use for edge interrupts is when the signal is generated by a sensor. In this case, we
use interrupts to detect changes in the sensor output.

Selected SDK Functions

These functions are in the library hardware_gpio and affect only the processor core that is calling it.

The SDKs implements two kinds of routines that are called in response to a GPIO event: a “normal”
callback and a “raw” callback. There is only one “normal” callback for each processor, but there can
be multiple “raw” callbacks.

When gpio_set_irq_callback() is called with a non-null callback, gpio_default_irq_handler()
(implemented in hardware_gpio/gpio.c) is added as a shared handler for IO_IRQ_BANK0. This routine
will check events on all the pins and, for each event set, acknowledge it and call the registered
“normal” callback (unless a “raw” callback was registered). The “normal” callback receives the pin
number and event mask as parameters.

A raw callback, registered via the add_raw_irq_handler functions, is added as a shared handler for
IO_IRQ_BANK0. This callback has no parameters.

This means that when a IO_IRQ_BANK0 is triggered:

• The default SDK interrupt handler is activated and calls the shared handlers registered. That
includes the raw callbacks and the default GPIO irq handler.

• The default GPIO irq handler will call the “normal” callback for pins that do not have a raw
callback registered.

void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enables (enable = 1) or disable (enable = 0) interrupts on the current processor for pin gpio on the
events select by event_mask:

• GPIO_IRQ_LEVEL_LOW

• GPIO_IRQ_LEVEL_HIGH

• GPIO_IRQ_EDGE_FALL

• GPIO_IRQ_EDGE_RISE

You can select multiple events by ORing these constants.

You should set a callback before enabling interrupts.

This function does not enable or disable IO_IRQ_BANK0, you must use irq_set_enabled for that.

void gpio_set_irq_callback (gpio_irq_callback_t callback)

This function changes the “normal” callback for gpio interrupts in the current processor. The callback
must be a void function with two parameters: the pin number and a mask of the pending events.
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If callback is null and there was a previous callback, gpio_default_irq_handler() is unregistered.

If callback is non-null and therewas no previous callback, gpio_default_irq_handler() is registered
as a shared handler for IO_IRQ_BANK0.

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled,

gpio_irq_callback_t callback)

This routine combines the previous two functions. If enabled is true, also enables IO_IRQ_BANK0.

Notice that the callback will be used for events in all pins that do not have a raw callback associated
(not just gpio).

static uint32_t gpio_get_irq_event_mask (uint gpio)

Returns a mask that indicates the pending events for pin gpio. The mask is an OR of GPIO_IRQ_-
LEVEL_LOW, GPIO_IRQ_LEVEL_HIGH, GPIO_IRQ_EDGE_FALL and GPIO_IRQ_EDGE_RISE.

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge (clears) the events indicated by event_mask for pin gpio. The mask is an OR of GPIO_-
IRQ_LEVEL_LOW, GPIO_IRQ_LEVEL_HIGH, GPIO_IRQ_EDGE_FALL and GPIO_IRQ_EDGE_RISE.

void gpio_add_raw_irq_handler_with_order_priority_masked (uint gpio_mask, irq_handler_t

handler, uint8_t order_priority)

Registers a raw callback for multiple GPIO pins (defined by gpio_mask) with priority order_-

priority. The handler must be a void function with no parameters.

static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t

handler, uint8_t order_priority)

Registers a raw callback for GPIO pin gpio with priority order_priority. The handler must be a
void function with no parameters.

void gpio_add_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)

Registers a raw callback for multiple GPIO pins (defined by gpio_mask) with default priority. The
handler must be a void function with no parameters.

static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler)

Registers a raw callback for GPIO pin gpiowith default priority. The handler must be a void function
with no parameters.

void gpio_remove_raw_irq_handler_masked (uint gpio_mask, irq_handler_t handler)

Unregisters the raw callbacks for multiple GPIO pins (defined by gpio_mask).

static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler)

Unregisters the raw callback for GPIO pin gpio.
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Example

This example will register the EDGE events for a pin. To test it, connect a button between GPIO16
and GND and look at messages sent to stdio.

Depending on the button and the way you press it, you may see that a single press or release will
generatemultiple events (even a RISE and FALL in the same interrupt). This occurs before buttons are
not perfect, they may close or open rapidly multiple times before stabilizing. This is called bouncing
(but not always cause by the bounce of a contact up and down).

The example enables the Schmitt trigger to reduce bouncing a little. You can also experiment
connecting a 0.1 uF capacitor in parallel to the button (this is a very crude example of hardware
debouncing). A good guide to debouncing can be found at http://www.ganssle.com/debouncing.htm.

GPIO Interrupt Example

1 /**

2 * @file gpiointerrupt.c

3 * @author Daniel Quadros

4 * @brief Example of using GPIO interrupts in the RP2040

5 * @version 0.1

6 * @date 2022-10-19

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include <stdio.h>

13 #include <time.h>

14

15 #include "pico/stdlib.h"

16 #include "hardware/gpio.h"

17

18 #define millis() to_ms_since_boot(get_absolute_time())

19

20 // A button is connected betweem this pin and ground

21 #define BUTTON_PIN 16

22

23 // Structure to represent a GPIO event

24 typedef struct {

25 uint32_t event_mask;

26 uint32_t event_time;

27 } GPIO_EVENT;

28

29 // GPIO event queue
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30 #define MAX_EVENTS 100

31 static GPIO_EVENT event_queue[MAX_EVENTS+1];

32 static volatile int event_in = 0; // where to place next event

33 static int event_out = 0; // where to take out next event

34

35

36 // Interrupt handler

37 void gpio_interrupt (uint gpio, uint32_t events) {

38 // set up the event information

39 event_queue[event_in].event_mask = events;

40 event_queue[event_in].event_time = millis();

41 // check if there is space for it in the queue

42 int aux = event_in + 1;

43 if (aux > MAX_EVENTS) {

44 aux = 0;

45 }

46 if (aux != event_out) {

47 // Ok, advance the input index

48 event_in = aux;

49 }

50 }

51

52

53 // Main Program

54 int main() {

55

56 // Init stdio0

57 stdio_init_all();

58

59 // Init the button pin

60 gpio_init(BUTTON_PIN);

61 gpio_set_dir(BUTTON_PIN, GPIO_IN);

62 gpio_pull_up(BUTTON_PIN);

63 gpio_set_input_hysteresis_enabled(BUTTON_PIN, true);

64

65 // Atach our callback to the gpio interrupt

66 gpio_set_irq_callback (gpio_interrupt);

67 gpio_set_irq_enabled(BUTTON_PIN, GPIO_IRQ_EDGE_FALL | GPIO_IRQ_EDGE_RISE, true\

68 );

69 irq_set_enabled(IO_IRQ_BANK0, true);

70

71 // main loop

72 while (1) {
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73 // Print out recorded events

74 while (event_in != event_out) {

75 // print an event

76 printf ("%7d %s %s\n", event_queue[event_out].event_time,

77 (event_queue[event_out].event_mask & GPIO_IRQ_EDGE_FALL) ?

78 "PRESS" : " ",

79 (event_queue[event_out].event_mask & GPIO_IRQ_EDGE_RISE) ?

80 "RELEASE" : ""

81 );

82 // remove it from the queue

83 int aux = event_out;

84 if (++aux > MAX_EVENTS) {

85 aux = 0;

86 }

87 event_out = aux;

88 }

89 sleep_ms(10);

90 }

91 return 0;

92 }
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Example of GPIO events

PWM

Pulse width modulation (PWM) is a technique where we have pulses sent in regular intervals (the
frequency) and control the time the pulse stays high. The ratio between the high time and the full
pulse time is the duty cycle.

For example, suppose we have a signal that stays high for 1 millisecond and low for 1 millisecond.
The frequency is 500Hz (we have one cycle each 2 milliseconds or 500 cycles per second). The duty
cycle is 50% (what we cal a square wave).

If instead the signal stays high for 0.5 milliseconds and low for 1.5 milliseconds, the frequency is the
same 500Hz, but the duty cycle is now 25%.
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PWM Example Waveforms

There are multiple uses for PWM. One example is controlling servo motors (where the duty cycle
determines the position of the motor shaft). Another is to generate something alike a analog signal,
as the average level changes as we change the duty cycle (we can see this by using PWM to control
the brightness of an LED).

The RP2040 has dedicated hardware to generate PWM and measure frequency and duty cycle of
pulses. There are two PWM blocks, each with eight slices.

PWM Slice

A PWM slice is the basic unit for generating PWM in the RP2040. There are 16 slices available. Each
slice has:

• A 16 bit counter
• A 8.4 fractional clock divider
• Two independent output channels, each with a duty cycle that can go from 0% to 100%
• Dual slope and trailing edge modulation
• Edge-sensitive input mode for frequency measurement
• Level-sensitive input mode for duty cycle measurement
• Configurable counter wrap value
• Interrupt request and DMA request on counter wrap

The figure bellow show a logical view of a slice.
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PWM Slice

Before going into the details, let’s understand the basic operation:

• The counting is enabled
– continuously all the time (PWM generation),
– continuously while the level of the input pin is high (duty cycle measurement).
– once on an edge in the input pin (frequency measurement),

• The clock divider reduces the rate of enable pulses, controlling the advance of the counter.
• When the counter reaches its wrap value it goes back to zero.
• If we are generating PWM, the high level will end when the counter reaches a certain count
(compare level). There are two levels per slice, so we can control independently the duty cycle
for two pins, named “A” and “B” (but they will have the same frequency).

• If we are measuring a signal, the counter value when it stops will give us the measurement.

Pins Assignment

All 30 GPIO pins can be used for PWM, but:

• As there are only 16 slices you can generate at most 16 different signals (if you connect the
same slice output to two GPIOs they will output the same thing).

• Each slice can do only one measurement, with input in the “B” pin. So you have at most 8
measurements, and the “A” pin of the slice should not be used as PWM output (as the counting
will be controlled by the input). If the “B” pin is used for input and you connect it to two GPIOs,
an OR will be done between the two GPIOs.

• If you are generating PWM, he two outputs of a slice will have the same frequency.

GPIO 0 1 2 3 4 5 6 7 8 9
Channel 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B
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GPIO 10 11 12 13 14 15 16 17 18 19
Channel 5A 5B 6A 6B 7A 7B 0A 0B 1A 1B

GPIO 20 21 22 23 24 25 26 27 28 29
Channel 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Clock Divider for PWM Generation

Each slice can have a different clock, created by dividing the clk_sys (125 MHz, if you haven’t
changed it) by a fractional divider. This divider has 12 bits, 8 for the integer part and 4 for the
fractional part (in units of 1/16).

The maximum division available is 256 (obtained by setting the the divisor to zero), resulting in a
clock of about 488 kHz. The frequency of the generated signal is (in the simple case) the division
of this clock by the 16 bit wrap value (plus one, as the counter goes from 0 to the wrap value), so
we can go down to about 7.5 Hz. If you need to generate lower frequency signals, you can use the
system timer interrupt or the PIO.

When selecting the divisor, notice that the higher the clock the more precision you can get in the
duty cycle. For a simple example let’s suppose we want to use a frequency of 10 kHz:

• If we choose a divisor of 250, the clock will be 500Khz. To get the 10 kHz we need to wrap the
counter at 49. This gives us only 50 options (0 to 49) for the wrap value (and duty cycle).

• If we choose a divisor of 12.5, the clock will be 10 MHz. We wrap the counter at 999 to get 10
kHz and get 1000 options for the duty cycle.

Basic PWM Generation

To generate a PWM signal, the counter will be in free-running mode, where it will always be
counting. This is the default mode and in it both A and B pins will be output.

Let’s look at the steps for generating a PWM signal:

• We select the pin we will use and look up to what slice and PWM pin it can be connected.
• We select the clock that will be used.
• We calculate the wrap value, based in the selected clock and the desired frequency. In most
applications we will not change the frequency during operation.

• We set the initial duty cycle
• We set the function of the pin to PWM
• We configure the PAD for output
• When needed, we change the duty cycle by changing the compare level
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In this basic mode, the counter will count from zero to the wrap value (inclusive), so the frequency
of the signal will be

fsys / (clock divisor * (wrap value+1))

The output signal will be in the high value until the counter equals the compare level:

Basic PWM Generation

The configuration of the PWM slice is done through the following registers (that should be accessed
through the SDK functions):

• DIV: clock divisor
• TOP: wrap value
• CC: counter compare (this register holds two 16 bit values, one for each output)

Some Fine Details of PWM Generation

The RP2040 supports 0% and 100% duty cycle with no glitch (the output signal will be always low
or high). This is done by setting the compare level to 0 and to (wrap value + 1).

When you change the TOP or CC register, the new value will be applied when the counter wraps
to zero. This is important to guarantee that the change will not occur at such a time that we get a
pulse too short or too long.
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Changing Compare Level with PWM running

Sometimes we need to generate two (or more) synchronized PWM signals. There is a global PWM
enable register that allows to start (or stop) multiple slices at the same time. If both use the same
frequency, the pulse will always start at the same position. There are also the option of advancing
or retarding the pulse in a slice.

When working with synchronized PWM signals, we may want the pulses to have not the same start,
but have the same center, so they remain in phase when the duty cycle is changed. For this there is
a phase-correct mode. In this mode the counter starts at zero, counts up until the wrap value, counts
down to zero, and repeats. The output will change to low when the compare level is reached in the
up count and change to high when the compare level is reached in the down count:
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Phase Correct PWM waveforms

Phase Correct counter operation

Note that the frequency for phase-correct will be half of the frequency for not phase-correct (for the
same divisor and wrap value).

Measuring Frequency and Duty Cycle

For measurement we will choose another counter option instead of the free-running. When this is
done, the B pin changes to input and the corresponding compare level is ignored.
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Let’s start by looking at duty cycle measurement. The idea here is that we will sample the input
signal at the frequency of fsys and generate a clock pulse only if the signal is high. This clock pulses
will be divided by the clock divisor and increment the counter. The steps to do the measurement are:

• We select the pin we will use and look up to what slice and PWM pin it can be connected,
making sure it is a B pin.

• We configure the clock mode to level sensitivity
• We configure the divisor
• We set the function of the pin to PWM
• We let the counter run for a known time
• We read the counter value and calculate the duty cycle

For example, let’s say we are using the default fsys of 125 MHz, configure the divisor for 200 and
get a count of 625:

• In 10 ms we have 125,000,000*0.01 = 1250,000 fsys pulses
• The maximum possible count (duty cycle 100%) is 1250,000/200 = 6250
• 625 out of 6250 corresponds to 10%

So the duty cycle for count c after running for time t with a divisor d is 100*c*d/(t*fsys).

When choosing the divisor, the ideal is to get the maximum possible count (for precision) that will
not overflow the 16 bits of the counter. In my example a divisor of 20 would give a better resolution,
but 6250 values for duty cycle is more than enough.

Frequency measurement is done by counting the rising or falling edges (changes in the level) in
the input signal. Each edge is a clock pulse that goes through the clock divider and increment the
counter. The low and high times of the signal must be greater than the fsys period for edge detection
to work. The steps required are:

• We select the pin we will use and look up to what slice and PWM pin it can be connected,
making sure it is a B pin.

• We configure the clock mode to edge sensitivity
• We configure the divisor
• We set the function of the pin to PWM
• We let the counter run for a known time
• We read the counter value and calculate the frequency

For example if the divisor is 10 and we get a count of 3000 in 0.1 second:

• The count of 3000 indicates we had 30,000 edges in 0.1 second
• That corresponds to 300,000 cycles per second (300 kHz)

So the frequency for count c after running for time t with a divisor d is c*d/t. For better precision
we should use lower d and/or greater t (taking care to not overflow the counter).
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Selected SDK Functions

These functions are in the library hardware_pwm. The slices are numbered form 0 to 7.

Pin Association

static uint pwm_gpio_to_slice_num (uint gpio)

Returns the number of the PWM slice connected to a gpio pin.

static uint pwm_gpio_to_channel (uint gpio)

Returns the channel of the PWM slice connected to a gpio pin:

• PWM_CHAN_A (0)
• PWM_CHAN_B (1)

Slice Configuration - Set 1

This first set of configuration routines change the slice directly.

static void pwm_set_clkdiv (uint slice_num, float divider)

Changes the clock divisor in the slice to the binary equivalent of div.

static void pwm_set_output_polarity (uint slice_num, bool a, bool b)

Changes the output polarity of both channels of a slice:

• a true inverts output A
• b true inverts output B

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode)

Changes the counter mode of a slice. Options for mode are:

• PWM_DIV_FREE_RUNNING selects free-running mode, channels A and B are outputs.
• PWM_DIV_B_RISING selects rising edge sensitivity, channel B is input.
• PWM_DIV_B_FALLING selects falling edge sensitivity, channel B is input.
• PWM_DIV_B_HIGH selects high level sensitivity, channel B is input.

static void pwm_set_phase_correct (uint slice_num, bool phase_correct)

Changes the phase correct option in a slice. phase_correct true enables phase correct, false disables.

static void pwm_set_wrap (uint slice_num, uint16_t wrap)

Sets the wrap value in a slice.

static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level)
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Sets the level of a channel in a slice. Options for channel are
PWM_CHAN_A and PWM_CHAN_B.

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b)

Sets the level of both channels in a slice.

static void pwm_set_gpio_level (uint gpio, uint16_t level)

Looks up the slice and channel connected to a gpio pin and set its level.

static void pwm_set_enabled (uint slice_num, bool enabled)

Enables or disables a slice.

static void pwm_set_mask_enabled (uint32_t mask)

Enable/Disable multiple PWM slices simultaneously. Bits 0 to 7 of mask corresponds to slices 0 to 7.
A value 0 in a bit disables the slice, a value 1 enables it.

Slice Configuration - Set 2

In this second set of configuration routines an struct (pwm_config) is used to set up the configuration.
Use pwm_config pwm_get_default_config() to get an initialized struct, change it with the pwm_-

config_set_xxx functions and then apply it to a slice using pwm_init().

Note: The levels are not part of the configuration structure.

static pwm_config pwm_get_default_config (void)

Returns an initialized configuration structure.

static void pwm_config_set_phase_correct (pwm_config *c, bool phase_correct)

Changes the phase correct option in the configuration (phase_correct true enables phase correct,
false disables).

static void pwm_config_set_clkdiv (pwm_config *c, float div)

Changes the clock divisor in the configuration to the binary equivalent of div.

static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract)

Changes the clock divisor in the configuration.

static void pwm_config_set_clkdiv_int (pwm_config *c, uint div)

Changes the clock divisor in the configuration to div, with zero in the fractional part.

static void pwm_config_set_clkdiv_mode (pwm_config *c, enum pwm_clkdiv_mode mode)

Changes the counter mode in the configuration. Options for mode are:

• PWM_DIV_FREE_RUNNING selects free-running mode, channels A and B are outputs.
• PWM_DIV_B_RISING selects rising edge sensitivity, channel B is input.
• PWM_DIV_B_FALLING selects falling edge sensitivity, channel B is input.
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• PWM_DIV_B_HIGH selects high level sensitivity, channel B is input.

static void pwm_config_set_output_polarity (pwm_config *c, bool a, bool b)

Changes the output polarity of both channels in the configuration:

• a true inverts output A
• b true inverts output B

static void pwm_config_set_wrap (pwm_config *c, uint16_t wrap)

Sets the wrap value in the configuration.

static void pwm_init (uint slice_num, pwm_config *c, bool start)

Initializes a slice as specified by the configuration. If start is true, the slice is enabled, otherwise
you will have to enable it with pwm_set_enabled() or pwm_set_mask_enabled().

Counter Manipulation

static uint16_t pwm_get_counter (uint slice_num)

Returns the current counter value for a slice.

static void pwm_set_counter (uint slice_num, uint16_t c)

Sets the counter for a slice.

static void pwm_advance_count (uint slice_num)

Advances the counter of a running slice by inserting a clock pulse after the current one. This requires
a divisor greater than one. This function blocks until the extra clock pulse is started.

static void pwm_retard_count (uint slice_num)

Retards the counter of a running slice, by canceling the next clock pulse. This function blocks until
the canceled clock pulse starts.

Interrupt and DMA

static void pwm_set_irq_enabled (uint slice_num, bool enabled)

Enables or disables interrupt request by a slice.

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled)

Enables or disables interrupt requests in the slice selected by mask (bit 0 to 7 corresponds to slice 0
to 7, values ‘1’ mark the slices affected).

static void pwm_clear_irq (uint slice_num)

Clears interrupt request of a slice.

static void pwm_force_irq (uint slice_num)
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Forces an interrupt request by a slice.

static uint32_t pwm_get_irq_status_mask (void)

Bits 0 to 7 indicate if interrupt is enabled in slices 0 to 7. A value of ‘1’ indicates the interrupt is
enables, ‘0’ indicates disabled.

static uint pwm_get_dreq (uint slice_num)

Returns the DMA request number for a slice.

Examples

PWM Generation

This example was used to generate the waveforms presented earlier. Frequency is 500Hz, duty cycle
is 50% for pin A and 25% for pin B. To use the examples as coded you need to connect the RP2040
board to a PC via USB and connect to it using a serial communication program (like puTTY or the
Arduino IDE monitor).

PWM generation will not start until there is a connection. Sending any character to the board will
change the waveforms between phase correct and normal PWM.

PWM Generation Example

1 /**

2 * @file pwmdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the PWM in the RP2040

5 * This example was used to generate the figures in the boot

6 * @version 0.1

7 * @date 2022-07-09

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include <string.h>

15 #include <stdlib.h>

16

17 #include "pico/stdlib.h"

18 #include "hardware/clocks.h"

19 #include "hardware/gpio.h"

20 #include "hardware/pwm.h"

21

22 // PWM pins
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23 #define PIN_A 0

24 #define PIN_B 1

25

26 // WRAP value

27 #define WRAP 1000

28

29 // Frequency

30 #define FREQ 500.0f

31

32 // Main Program

33 int main() {

34 // Init stdio

35 stdio_init_all();

36 while (!stdio_usb_connected()) {

37 sleep_ms(100);

38 }

39 printf("\nPWM Example\n");

40

41 // Find out which PWM slice is connected to the pins

42 uint slice_num = pwm_gpio_to_slice_num(PIN_A);

43 if (slice_num != pwm_gpio_to_slice_num(PIN_B)) {

44 printf("Pins are not in the same slice!\n");

45 printf("Aborting...\n");

46 while (true) {

47 sleep_ms(100);

48 }

49 }

50

51 // Configure the slice

52 // f = fsys / (clock divisor * (wrap value+1)

53 // clock divisor = fsys / (f * (wrap value+1))

54 float fsys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_SYS)*1000.0f;

55 float div = fsys/(FREQ * (WRAP+1));

56 printf("fsys= %.2f div=%.2f\n", fsys, div);

57 pwm_config config = pwm_get_default_config ();

58 pwm_config_set_wrap(&config, WRAP);

59 pwm_config_set_clkdiv(&config, div);

60 pwm_config_set_phase_correct(&config, false);

61 pwm_config_set_clkdiv_mode(&config, PWM_DIV_FREE_RUNNING);

62 pwm_init(slice_num, &config, false);

63 pwm_set_both_levels(slice_num, WRAP/2, WRAP/4);

64 pwm_set_enabled(slice_num, true);

65
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66 // Connect PINs to the PWM

67 gpio_set_function(PIN_A, GPIO_FUNC_PWM);

68 gpio_set_function(PIN_B, GPIO_FUNC_PWM);

69

70 // Main loop

71 bool phase_correct = false;

72 while (true) {

73 if (getchar_timeout_us(0) != PICO_ERROR_TIMEOUT) {

74 // Change phase correct if anything received from stdio

75 // Stop PWM while changing configuration

76 // If pahse correct, PWM will count twice,

77 // so we double the clock frequence

78 phase_correct = !phase_correct;

79 pwm_set_enabled(slice_num, false);

80 pwm_set_clkdiv(slice_num, phase_correct? div/2.0f : div);

81 pwm_set_phase_correct(slice_num, phase_correct);

82 pwm_set_counter(slice_num, 0);

83 pwm_set_enabled(slice_num, true);

84 printf ("Phase correct: %s\n", phase_correct? "ON" : "OFF");

85 }

86 }

87 }

Frequency and Duty-cycle Measurement

For this example you need to connect GP1 to GP3. The software will generate various PWM signals
and try to measure them.

PWM Measurement Example

1 /**

2 * @file pwmmesurement.c

3 * @author Daniel Quadros

4 * @brief Example of using the PWM peripheral in the RP2040 for

5 * measuring frequence and duty cycle

6 * This is am expansion of the measure_duty_cycle SDK example

7 * @version 0.1

8 * @date 2022-07-11

9 *

10 * @copyright Copyright (c) 2022, Daniel Quadros

11 *

12 */

13

14 #include <stdio.h>
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15 #include <string.h>

16 #include <stdlib.h>

17

18 #include "pico/stdlib.h"

19 #include "hardware/clocks.h"

20 #include "hardware/gpio.h"

21 #include "hardware/pwm.h"

22

23 // Pins - this pins should be connected together

24 const uint OUTPUT_PIN = 1;

25 const uint MEASURE_PIN = 3; // this must be an PWM "B" pin

26

27 // WRAP value for PWM generation

28 #define WRAP 1000

29

30 // Values for measurement

31 #define MEASURE_C_DIV 20

32 #define MEASURE_C_TIME 10 // ms

33 #define MEASURE_F_DIV 1

34 #define MEASURE_F_TIME 100 // ms

35

36 // Test values

37 struct {

38 float freq;

39 float duty;

40 } test[] =

41 {

42 { 500.0f, 0.0f },

43 { 500.0f, 1.0f },

44 { 500.0f, 0.25f },

45 { 500.0f, 0.5f },

46 { 500.0f, 0.75f },

47 { 492.0f, 0.60f },

48 { 947.0f, 0.60f },

49 { 1000.0f, 0.25f },

50 { 0.0, 0.0}

51 };

52

53 // Generate PWM

54 void generate_pwm(int slice, float freq, float duty) {

55 float fsys = clock_get_hz(clk_sys);

56 float div = fsys/(freq * (WRAP+1));

57 pwm_config config = pwm_get_default_config ();
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58 pwm_config_set_wrap(&config, WRAP);

59 pwm_config_set_clkdiv(&config, div);

60 pwm_config_set_phase_correct(&config, false);

61 pwm_config_set_clkdiv_mode(&config, PWM_DIV_FREE_RUNNING);

62 pwm_init(slice, &config, false);

63 pwm_set_chan_level(slice, pwm_gpio_to_channel(OUTPUT_PIN), (uint16_t) (duty*(WRA\

64 P+1)));

65 pwm_set_enabled(slice, true);

66 }

67

68 // Measure frequency

69 float measure_frequency(uint slice) {

70

71 // Count once for every MEASURE_DIV cycles the PWM B input is high

72 pwm_config cfg = pwm_get_default_config();

73 pwm_config_set_clkdiv_mode(&cfg, PWM_DIV_B_RISING);

74 pwm_config_set_clkdiv(&cfg, MEASURE_F_DIV);

75 pwm_init(slice, &cfg, false);

76 gpio_set_function(MEASURE_PIN, GPIO_FUNC_PWM);

77

78 // This is where the actual count is done

79 pwm_set_enabled(slice, true);

80 sleep_ms(MEASURE_F_TIME);

81 pwm_set_enabled(slice, false);

82

83 // Calculate frequency

84 return (pwm_get_counter(slice) * MEASURE_F_DIV * 1000.0f) / MEASURE_F_TIME;

85 }

86

87 // Measure duty cycle

88 float measure_duty_cycle(uint slice) {

89

90 // Count once for every MEASURE_DIV cycles the PWM B input is high

91 pwm_config cfg = pwm_get_default_config();

92 pwm_config_set_clkdiv_mode(&cfg, PWM_DIV_B_HIGH);

93 pwm_config_set_clkdiv(&cfg, MEASURE_C_DIV);

94 pwm_init(slice, &cfg, false);

95 gpio_set_function(MEASURE_PIN, GPIO_FUNC_PWM);

96

97 // This is where the actual count is done

98 pwm_set_enabled(slice, true);

99 sleep_ms(MEASURE_C_TIME);

100 pwm_set_enabled(slice, false);
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101

102 // Calculate duty cycle

103 float counting_rate = clock_get_hz(clk_sys) * ((float) MEASURE_C_TIME / 1000.0f);

104 float max_possible_count = counting_rate / MEASURE_C_DIV;

105 return pwm_get_counter(slice) / max_possible_count;

106 }

107

108 // Main Program

109 int main() {

110 // Init stdio

111 stdio_init_all();

112 while (!stdio_usb_connected()) {

113 sleep_ms(100);

114 }

115 printf("\nPWM Measurement Example\n");

116

117 // Find out which PWM slice is connected to the pins

118 uint slice_out = pwm_gpio_to_slice_num(OUTPUT_PIN);

119 uint slice_mea = pwm_gpio_to_slice_num(MEASURE_PIN);

120

121 assert(pwm_gpio_to_channel(MEASURE_PIN) == PWM_CHAN_B);

122

123 // Connect PINs to the PWM

124 gpio_set_function(OUTPUT_PIN, GPIO_FUNC_PWM);

125

126 // Main loop

127 while (true) {

128 for (int i = 0; test[i].freq != 0.0; i++) {

129 generate_pwm(slice_out, test[i].freq, test[i].duty);

130 float freq = measure_frequency(slice_mea);

131 float duty = measure_duty_cycle(slice_mea);

132 pwm_set_enabled(slice_out, false);

133 printf ("Freq %.2f x %.2f Duty %.2f x %.2f\n",

134 test[i].freq, freq, test[i].duty, duty);

135 }

136 while (getchar_timeout_us(0) == PICO_ERROR_TIMEOUT) {

137 sleep_ms(100);

138 }

139 printf("\n");

140 }

141 }
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Take a look at the results:

PWM Measurement Output

Notice that for 0 and 100% duty-cycles the frequency is zero - the signal does not change! We can
also see that our precision in measurements is not perfect. For example, a frequency of 947Hz is
measure as 940Hz. This happens because we are looking at the signal for just 0.1 second so we will
see only 94 rising edges. To get a better precision of a frequency in this range we would need to
increase the counting time.



The Programmable I/O (PIO)
The PIO is a kind of peripheral that you will not find in most microcontrollers. It is a solution for
interfacing challenges normally solved by manual control of I/O and precise timings that do not
integrate nicely with other software requirements.

You will find out that a lot of space in the official RP2040 documentation is dedicated to the PIO, but
it may still sound mysterious and complicated. I will do my best to guide you through an easy path
to understanding this important part of the RP2040.

The PIO State Machines

The basic unit of the PIO are the state machines. They are small processors that execute small
programs concurrently with the execution of the two ARM cores. This means that they can keep
doing their jobs without interfering with the execution of the main firmware, and vice-versa.

The state machines communicate with the ARM core using queues (FIFOs - First In First Out) and
interrupts. The FIFOs can also work with the DMA controller, with data moving directly between
the FIFOs and memory.

The State Machines can interact with GPIOs, not only doing digital input and output but also
controlling the direction of the pins (changing them between input and output during execution).

The RP2040 has two PIOs, eachwith four StateMachines. Each PIO has also a 32 position instruction
memory that is shared by the four State Machines. The instruction memory store the programs that
the state machines will execute.

The FIFOs

Each State Machine has two FIFOs, each with four 32 bit positions. Normally one FIFO is for
receiving (send data from the PIO to the processor) and the other for transmitting (sending data
from the processor to the PIO).

If the PIO will only receive or transmit, the FIFOs can be configured as a single eight position queue.

The function of the FIFOs is to allow the PIOs to communicate asynchronously with the main CPUs
instead of requiring their intervention as each word is received or sent.
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Programmer’s Model

When writing a program for a State Machine, the Programmer will use five 32 bit registers:

• Out Shift Register (OSR): this register will get data from the TX FIFO and shift it to the right
or left, inserting zeros on the other side. The shifted out bits can be outputted to GPIOs.

• In Shift Register (ISR): this register will shift bits to the right or left and put the result to the
RX FIFO. The shifted in bits can be inputted from GPIOs.

• Scratch Registers (X and Y): this registers can be used as source or destination for some
instructions.

• Program Counter (PC): this register points to the current executing instruction and can be used
as destination in a few instructions.

PIO Configuration

Part of the complexity in understanding the PIOs is that the behavior of the state machines depends
not only on the programs they are executing but on the way they are configured. Let’s see what can
be configured.

GPIO Pins Mapping

In most applications we will want the PIO to do input and output through GPIO pins.

The RP2040 controls the GPIOs through 32 bit registers, where each bit corresponds to a GPIO -
actually the RP2040 has only 30 GPIOs (GP00 to GP29), so two bits are unused. The state machines
do not use this numbers. The GPIOsmust bemapped into the numbers used in the PIO programming.

The idea behind the mappings is to align the pins to the bits in the state machine registers. This
is done by defining a “base pin” that will correspond to bit 0 (lowest bit) in the registers. In this
mapping, GP00 is considered next to GP32, so the mapping can “wrap around”. For example, if you
configure a base pin to 9, bit 0 will be associated with GP09, bit 1 to GP10 and so on.

The configuration allows us to specify five groups of pins, each group used in a different situation:

• Input: we configure the “base pin” that will be input pin 0 for the state machine. This mapping
is used by the WAIT, IN and MOV (for the source) instructions. Input pins are normally used
to receive data that will be put in the RX FIFO or to wait a change on a pin.

• Output: we configure the “base pin” and the number of pins that will be used for output.
This mapping is used by the OUT and MOV (for the destination) instructions. Output pins are
normally used to send data from the TX FIFO.

• Set: we configure the “base pin” and the number of pins that will be used for the SET instruction.
Set pins are used when the change of a pin does not come directly from the data in the TX FIFO.
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• Side-Set: we configure the “base pin” and number of side-set pins (up to five). We can also
configure a side-set enable bit, that will control if side-set is used on each instruction. Side-set
pins can be changed by any instruction but, as described in the next section, using side-pins
will limit the delay that can be used in the instructions. Side-set is used when a pin must change
at the same time a instruction is executed.

• Jump-Pin: one pin can be configured to be tested by the JMP instruction. The jump-pin is used
when you need to change the flow of the program based on a pin.

Of course the uses mentioned above not a fixed rule, you can use your imagination and find other
uses for the GPIO mapping, as long as you respect the groups used by each instruction.

When an output or side set pin is used, we can change the state of the pin (low or high) or its direction
(input or output).

Clock

Each state machine can have a different clock, created by dividing the clk_sys (125MHz, if you
haven’t changed it) by a fractional divider. This divider has 24 bits, 16 for the integer part and 8 for
the fractional part (in units of 1/256).

For example, if we want to use a clock of 50MHz, we need to divide clk_sys by 2.5 (that is an integer
part of 2 and a fractional part of 128).

This clock will define the cycle time. Every PIO instruction can be executed in one cycle, but you
can add an extra delay.

The maximum delay available will depend on the configuration for the side-set pins, as both features
share the same 5 bit field in the instruction code. If you are not using side-set, you can specify up to
31 delay cycles. If you have 1 side-set pin, the maximum goes down to 15, and so on.

If you need to generate precision timing you will have to choose carefully the divider and take into
account the instructions execution time (including the delay) in all execution paths. We will see how
it is done in the examples.

FIFOs Configuration

There are a few configurations that affect the FIFOs, some of them will affect how the program will
operate.

The first configuration allows to join the two FIFOs into a single RX or TX FIFO. This is useful when
you are only receiving or transmitting.

The next configurations are the auto-pull and auto-push. Remember that the output shift register
(OSR) is fed by the TX FIFO and that the RX FIFO is fed by the input shift register (ISR)? There are
two ways to do the moving between the shift registers and the FIFOs:
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• You can do that explicitly using the PUSH and PULL instructions.
• It can be done automatically by activating auto-pull or auto-push. In both cases you also set
how many bits need to be shift to do the moving.

When doing serial communications the auto options will simplify your code, as you will not need
to count how many bits were shifted.

ProgramWrapping

Later we talk more about the control flow in PIO programs, but there is a special case that’s
implemented as a configuration.

Most PIO programswill loop forever: when they reach the end of the program they need to jump back
to a previous instruction. This can be done with a JMP instruction, but it will cost one instruction
and one cycle.

Each state machine has two configuration registers (EXECCTRL_WRAP_TOP and EXECCTRL_WRAP_-

BOTTOM). After executing the instruction at EXECCTRL_WRAP_TOP (if its not a JMP that is taken)
execution will proceed at EXECCTRL_WRAP_BOTTOM instead of the next instruction (with no time
penalty).

This configuration can be done by placing two special directives in the source program (.wrap and
.wrap_target).

Interrupt (IRQ) Flags

There are eight IRQ Flags available to all state machines, numbered 0 to 7. The lower four (0 to 3)
can be associated to one of the two PIO’s interrupt request lines.

One use for the IRQ Flags is to generate an interrupt to notify one of the ARM cores. The PIO
program can not only set a IRQ flag but also wait for the interrupt to be acknowledge by one of the
cores.

Another use is to synchronize two state machines, as the flags are shared by all.

The Instructions

The table bellow shows the complete PIO instruction set.
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PIO Instructions

Each instruction execute in one clock cycle and uses 16 bits in the program memory:

• The first three bits determine the instruction.
• The next five bits are divided between delay and side-set. As we saw, you can configure
from 0 to 5 side-set pins (optionally including the side-set enable bit). The delay encoded in
the remaining bits is the number of clock cycles waited after the instruction executes, before
executing the next instruction.

• The remaining eight bits encodes the operands of the instruction.

In the following assembly codings, (x) means that x is optional and {x} represents an expression
that will result in x. Side set and delay values can be added to any of the instructions:

{instruction} (side {side_set_value}) ([{delay_value}])

JMP

The format of the JMP opcode is

PIO JMP Instruction

The JMP instruction set the program counter to Address if Condition is satisfied. The delay takes
effect after the instruction executes, regardless of the jumping taking place.

The condition available are:
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• 000 / (no condition): Always
• 001 / !X: register X is zero
• 010 / X–: register X is not zero, after the test X is always decremented
• 011 / !Y: register Y is zero
• 100 / Y–: register Y is not zero, after the test Y is always decremented
• 101 / X!=Y: register X not equal to Y
• 110 / PIN: true if input pin is 1
• 111 / !OSRE: output shift register not empty (at least SHIFTCTRL_PULL_THRESH bits were shifted
into the OSRE since last PUSH or auto-push)

The coding of the JMP instruction in assembly is as follows:

jmp (cod) {target}

cod is the optional condition (!X, X–, !Y, Y–, X!=Y, PIN, !OSRE)

target is the a program label or address. While the encoding uses an absolute address, in assembly we
use a value relative to the start of the program (the assembler takes care of adding the start address).

WAIT

The format of the WAIT opcode is:

PIO WAIT Instruction

This instruction stalls (stops) execution until a condition is met. The side-set (if used) is done when
the instruction starts execution, the delay starts after the condition is met.

Source specify what we are waiting for:

• 00 (GPIO): GPIO selected by index (this does not go through input pins mapping)
• 01 (PIN): Input pin selected by index (according o the input pins mapping)
• 10 (IRQ): PIO IRQ selected by index: if the most significant bit (MSB) is 0, the lower 2 bits of
index select the IRQ flag; if MSB is 1, the state machine number (0 to 3) is add to index and the
lower 2 bits of the result select the IRQ flag.

• 11 (RESERVED): not used

For GPIO and PIN, Pol (polarity) determines what value we are waiting for (0 or 1). For IRQ, pol =
1 means clear IRQ after condition is met.

The WAIT instruction is coded in assembly as follows:
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wait {pol} gpio {gpio_num}

wait {pol} pin {pin_num}

wait {pol} irq {irq_num} (rel)

The rel in the third option sets theMSB in the index, making irq_num “relative” to the state machine.

IN

The format format of the IN opcode is:

PIO IN Instruction

The IN instruction will shift bit count bits from the source into the ISR:

• The least significant bit count bits of the source will be used as input (regardless of the
configured shift direction).

• The ISR is shifted bit count bits in the configured direction and the source bits are put in the
“opened” positions.

• The input shift count is increase by bit count (stopping at 32).
• If auto push is enabled and the configured threshold is reached, the ISR is pushed into the Rx
FIFO and cleared to zeros (the input shift count is also zeroed). The state machine stalls if there
is no space in the FIFO (execution resumes when the push can be done).

The available sources are:

• 000 (PINS): bit count pins (using the configured input pin mapping)
• 001 (X): X register
• 010 (Y): Y register
• 011 (NULL): zeros
• 100: reserved
• 101: reserved
• 110 (ISR)
• 111 (OSR)

A bit count of zero is treated as 32.

The IN instruction is coded in assembly as follows:

in {source},{bit_count}
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OUT

The format format of the OUT opcode is:

PIO OUT Instruction

The OUT instruction will shift bit count bits from the OSR into the destination:

• A zero filled 32 bit value will be written to destination, with the least significant bits coming
from:
– if the shift direction is to the right, the least significant bit count in the OSR
– if the shift direction is to the leftt, the most significant bit count in the OSR

• The output shift count is increase by bit count (stopping at 32)
• If auto pull is enabled and the configured threshold is reached, the OSR is filled from the Tx
FIFO and the output shift count is zeroed. The state machine stalls if there is no data in the
FIFO (execution resumes when the pull can be done).

The available sources are:

• 000 (PINS): bit count pins (using the configured output pin mapping)
• 001 (X): X register
• 010 (Y): Y register
• 011 (NULL): zeros
• 100 (PINDIR): set direction of bit count pins (using the configured output pin mapping)
• 101 (PC): causes a jump
• 110 (ISR): also sets input shift register counter to bit_count

• 111 (EXEC): execute data as instruction

A bit count of zero is treated as 32.

The OUT instruction is coded in assembly as follows:

out {destination},{bit_count}
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PUSH

The format format of the PUSH opcode is:

PIO PUSH Instruction

Operation of the PUSH instruction depends on two flags in the opcode:

• If IfFull is 1, the instruction does nothing if the input shift counter has not reached its threshold.
It its 0 or the threshold was reached, continues as follows

• If Block is 0 and the Rx FIFO is full, ISR (and its counter) is cleared to zero and execution
proceeds with the next instruction. If Block is 1 and the Rx FIFO is full, state machine stalls
until there is space in the FIFO, then continues. If the Rx FIFO is not full, continues

• Put the content of ISR in the Rx FIFO and clear ISR (and its counter) to zero

The PUSH instruction is coded in assembly as follows:

push (iffull)

push (iffull) block

push (iffull) noblock

As the defaults are IfFull = 0 and Block = 1, you will normally just use push. IfFull should be used
only if you cannot use automatic push (because it could block some instruction). Block = 0 should
be used in a context were blocking is worse than losing data if the FIFO becomes full.

PULL

The format format of the PULL opcode is:

PIO PULL Instruction

Operation of the PULL instruction depends on two flags in the opcode:

• If IfEmpty is 1, the instruction does nothing if the output shift counter has not reached its
threshold. It its 0 or the threshold was reached, continues as follows

• If Block is 0 and the Tx FIFO is empty, register X is copied into OSR, its counter is cleared
and execution proceeds with the next instruction. If Block is 1 and the Tx FIFO is empty, state
machine stalls until there is data in the FIFO, then continues. If the Tx FIFO is not empty,
continues
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• Pull the top of Tx FIFO into OSR and set its counter to zero

The PULL instruction is coded in assembly as follows:

push (ifempty)

push (ifempty) block

push (ifempty) noblock

As the defaults are IfEmpty = 0 and Block = 1, you will normally just use pull. IfEmpty should
be used only if you cannot use automatic pull (because it could block some instruction). Block = 0
should be used in a context were a default value should be used if there is no data available in the
Tx FIFO.

MOV

The format format of the MOV opcode is:

PIO MOV Instruction

The MOV instruction copies data from a source to a destination, applying operation.

Source can be:

• 000 (PINS): uses input pin mapping
• 001 (X)
• 010 (Y)
• 011 (NULL): zeros
• 100 Reserved
• 101 (STATUS): all zeros or all ones, depending on statemachine status configured by EXECCTRL_-
STATUS_SEL

• 110 (ISR)
• 111 (OSR)

Destination can be:

• 000 (PINS): uses output pin mapping
• 001 (X)
• 010 (Y)
• 011 Reserved
• 100 (EXEC): execute as instruction (ignores delay in original MOV instruction, uses delay in
EXEC’d instruction)
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• 101 (PC): causes a jump
• 110 (ISR): ISR counter set to zero
• 111 (OSR): OSR counter set to zero

The operations available are:

• 00: None, copy data unchanged
• 01: Invert bits (0->1 and 1->0)
• 10: Reverse the data (bit n <-> bit 31-n)
• 11: Reserved

The MOV instruction is coded in assembly as follows:

mov {destination},(op),{source}

Omit op for “None”, use ! or ∼ for “Invert” and
use :: for “Reverse”

IRQ

The format format of the IRQ opcode is:

PIO IRQ Instruction

The IRQ instruction is used to manipulate the IRQ Flags. The operation depends on the Clear and
Wait bits in the opcode:

Clear Wait Operation
0 0 Set an IRQ Flag
0 1 Set an IRQ Flag and wait until it is cleared
1 x Clear an IRQ Flag (Wait is ignored)

The IRQ Flag is selected by the index field:

• If the MSB of the index is zero, the lower three bits select the flag.
• If the MSB of the index is one, the lower three bits are added to the state machine index and
the lower three bits of the result select the flag. This is useful if the same code will be run by
more than one state machine and different flags should be used.

The IRQ instruction is coded in assembly as follows:
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irq {irq_num} (_rel)

irq set {irq_num} (_rel)

irq nowait {irq_num} (_rel)

set without waiting

irq wait {irq_num} (_rel)

set and wait

irq clear {irq_num} (_rel)

clear

SET

The format format of the SET opcode is:

PIO SET Instruction

The SET instruction writes an immediate value (0 to 31) into a destination.

Destination can be:

• 000 (PINS): uses set pin mapping
• 001 (X)
• 010 (Y)
• 011 Reserved
• 100 (PINDIRS): uses set pin mapping
• 101 Reserved
• 110 Reserved
• 111 Reserved

The SET instruction is coded in assembly as follows:

set {destination},{value}

Flow Control

Typically instructions for a PIO State Machine comes from its program memory.

The State Machine Program Counter (PC) points to the executing instruction. After the instruction
completes, it is updated to the next instruction. This is normally in the next address in the program
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memory, but JMP, IN and MOV instructions can change the PC. There is also the program wrap that
will make the program jump when it reach an address.

An instruction takes at least one cycle to execute. WAIT, IN, OUT, PUSH, PULL and IRQ instructions
can stall - stop execution until a condition is met. After the instruction executes we can have an
additional delay specified in the delay/side-set field.

There are three ways to execute PIO instructions from outside the program memory:

• Write the instruction in the special configuration register SMx_INSTR
• Use MOV EXEC to execute an instruction that is in a register
• Use OUT EXEC to execute an instruction in the output shifter

The OUT EXEC option can be used to mix instructions and data in the values written to the FIFO.

Coding, Compiling and Running PIO Programs

The preferred way to code a PIO program for use with the C/C++ SDK is to create a .pio file. This
file will contain:

• The PIO program, written in the PIO assembly language
• A C routine to initialize/configure a state machine for execution of the PIO program.

The PIO assembler will translate the .pio file into a C header file (.h) for inclusion in the C source
where the program will be used. Assuming you have included pico_sdk_import.cmake and called
pico_sdk_init() in your CMakeLists.txt, youwill call the assembler in the CMakeLists.txt by adding
the line

pico_generate_pio_header(project ${CMAKE_CURRENT_LIST_DIR}/xxx.pio)

where project is the name of your project and xxx.pio your source pio file.

The PIO assembler can also target other languages like MicroPython. We will not cover that in this
book.

PIO Assembly Language

In the previous section we have seem the assembly coding for the instructions. Let’s take now a
closer look at the full assembly language.
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Directives

Directives are statements that control the assembly and execution of the PIO program but are note
translated to PIO instructions. All instructions start with a dot.

.program {name}

Start a program. PIO instructions can only be used inside a program.

.define ( PUBLIC ) {symbol} {value}

Associates value to symbol. If the define is before the first program in file, it can be use in all programs
in the file. Otherwise it can be used in the program it is occurs.

If PUBLIC is used, a definition will be included in the C header file as #define <program_name>_-

<symbol> value

.origin {offset}

Defines the position in the instruction memory where the following instructions will run. Must be
used inside a program.

.side_set {count} (opt) (pindirs)

This directive configure the use of side set and must be used inside a program before any instruction.
is the number of bits to be reserved for side set. If opt is used, the side set is optional (an additional
bit will be used). pindirs indicate that the side set will affect PINDIRS instead of PINS.

.wrap_target

This marks the place where execution will got when it wraps. Must be inside a program and only
one can be used for each program. If not used, the default is the beginning of the program.

.wrap

This marks where the program will wrap (jump to the wrap target). Must be inside a program and
only one can be used for each program. If not used, the default is the end of the program.

.lang_opt {lang} {name} {option}

This sets an option for an specific language translator.

.word {value}

Insert a 16 bit value as an instruction. Must be used inside a program.

Values and Expressions

A value can be one of the following:

• an integer number, like -1 and 31
• an hexadecimal number, prefixed by 0x, like 0x42
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• a binary number, prefixed by 0b, like 0b1010101
• a symbol, define by .define

• a label, as describe ahead
• an expression between parentheses, like (1+3*cte)

An expression can be:

• a value
• -expression
• ::expression (bit reversion)
• expression+expression
• expression-expression
• expression*expression
• expression/expression

Comments

The PIO assembler ignores text in a line after // or ;

It also ignores text between /* and */

Labels

A label is a special king of .define where the value is the current program instruction offset. It can
be defined by

{label}:

or

PUBLIC {label}:

Selected SDK Functions

The SDK functions for interacting with the PIO are in the library hardware_pio.

There are a few parameters that you see in many functions:

• pio selects one of the two PIOs and should be pio0 or pio1
• sm selects one of the four state machines within a PIO and should be an integer (index) between
0 and 3.

• config is a pointer to a pio_sm_config structure that stores the configuration of a state machine.
You should manipulate this structure with the SDK functions and not by accessing its members.
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State Machine Allocation

The hardware_pio library maintains a simple (but multicore safe) control of state machine usage in
each PIO.

int pio_claim_unused_sm (PIO pio, bool required)

This function will return the index of an unused state machine in a PIO. This is the preferred way to
select a state machine, as it avoids conflicts that may result if you use a fixed index. You still have
to select the PIO.

If required is false, the function will return -1 if all state machines are in use (claimed) in the PIO.
If required is true and there is no free state machine, the function will panic (send an error message
to stdio and halt).

void pio_sm_claim (PIO pio, uint sm)

This function marks a state machine as in use (claimed). Panics if the state machine was already
claimed.

void pio_sm_unclaim (PIO pio, uint sm)

This function marks a state machine as not in use.

bool pio_sm_is_claimed (PIO pio, uint sm)

Returns true is state machine is claimed.

Program Control

uint pio_add_program (PIO pio, const pio_program_t *program)

Loads a PIO program. Will find a location (offset) in the instruction memory where there is enough
space for the program, load the instructions and return the offset where the program was loaded. If
something goes wrong (like not having enough space), the function panics (writes an error message
to standard output and halts).

void pio_sm_init (PIO pio, uint sm, uint initial_pc, const pio_sm_config *config)

Resets and configures the state machine. The PC is initialized with initial_pc and the state machine
is disabled (stopped).

static void pio_sm_set_config (PIO pio, uint sm, const pio_sm_config *config)

Configures a state machine (see configuration bellow to see how to prepare config)

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled)

This function will enable (start, enabled = true) or disable (stop, enabled = false) a state machine.
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FIFO Usage

static void pio_sm_clear_fifos (PIO pio, uint sm)

Clear the FIFOs of the state sachine sm (0 a 3) of the PIO pio.

static uint32_t pio_sm_get (PIO pio, uint sm)

Reads a word from the Rx FIFO of a state machine. Does not check if the FIFO is empty, the return
is undefined if the FIFO is empty.

static uint32_t pio_sm_get_blocking (PIO pio, uint sm)

Reads a word from the Rx FIFO of a state machine, blocking (waiting in a loop for data) if it is empty.

static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm)

Returns the number of words in the Rx FIFO of a state machine.

static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm)

Returns the number of words in the Tx FIFO of a state machine.

static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm)

Return true if the Rx FIFO of a state machine is empty, false if holds data.

static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm)

Return true if the Rx FIFO of a state machine is full, false if there is space for more data.

static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm)

Return true if the Tx FIFO of a state machine is empty, false if holds data.

static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm)

Return true if the Tx FIFO of a state machine is full, false if there is space for more data.

static void pio_sm_put (PIO pio, uint sm, uint32_t data)

Writes a word in the Tx FIFO of a state machine. Does not check if the Tx FIFO is full, if it is the
data is ignored.

static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data)

Writes a word to the Tx FIFO of a state machine, blocking (waiting in a loop for space) if it is full.

Configuration

static void pio_sm_set_clkdiv (PIO pio, uint sm, float div)

Sets the clock divisor for a state machine. The divisor is specified as a float number.

static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t

div_frac)



The Programmable I/O (PIO) 144

Sets the clock divisor for a state machine. The divisor is specified as an integer and a fraction (in
units of 1/256). For example, div_int=2 and div_frac = 128 means 2.5.

static void pio_gpio_init (PIO pio, uint pin)

Connects a pin to a PIO. The documentation say this is needed for output pins only, put my third
PIO example would not work without it… I recommend you use it for all pins, output or input.

void pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pin_base, uint pin_count,

bool is_out)

Sets the direction of pin_count pins, starting from pin_base, in a state machine.

void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_-

mask)

Sets the direction of pins in a state machine. Bits with 1 in pin_maks indicate the pins that will be
affected; the corresponding pin in pin_dirs define the direction (1 = output, 0 = input).

void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)

Sets the value of all pins in a state machine.

void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)

Sets the value of pins in a state machine. Bits with 1 in pin_maks indicate the pins that will be
affected; the corresponding pin in pin_values define the value.

static pio_sm_config pio_get_default_sm_config (void)

Returns an initialized configuration structure. Configurations are set as following:

Configuration Value
Out Pins 32 starting at 0
Set Pins 0 starting at 0
In Pins (base) 0
Side Set Pins (base) 0
Side Set disabled
Wrap wrap=31, wrap_to=0
In Shift shift_direction=right, autopush=false, push_thrshold=32
Out Shift shift_direction=right, autopull=false, pull_thrshold=32
Jmp Pin 0
Out Special sticky=false, has_enable_pin=false, enable_pin_index=0
Mov Status status_sel=STATUS_TX_LESSTHAN, n=0

Writes a word in the Tx FIFO of a state machine, blocking (waiting in a loop for space) if it is full.

static void sm_config_set_in_shift (pio_sm_config *c, bool shift_right, bool autopush,

uint push_threshold)

Sets the input shift register options (ISR) in a state machine configuration:

• If shift_right is true, the ISR will shift to right. If its false, the ISR will shift to the left.
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• If autopush is true, the IRS will be pushed into the Rx FIFO when push_threshold bits are
shifted in

static void sm_config_set_out_shift (pio_sm_config *c, bool shift_right, bool autopull,

uint pull_threshold)

Sets the output shift register options (OSR) in a state machine configuration:

• If shift_right is true, the OSR will shift to right. If its false, the OSR will shift to the left.
• If autopull is true, the ORS will be loaded from the Tx FIFO when pull_threshold bits are
shifted out

static void sm_config_set_fifo_join (pio_sm_config *c, enum pio_fifo_join join)

Sets the join FIFO option in a state machine configuration. The values for joinare:

• PIO_FIFO_JOIN_NONE use both Rx and Tx FIFOs, each with 4 positions
• PIO_FIFO_JOIN_TX use only a 8 position Tx FIFO
• PIO_FIFO_JOIN_RX use only a 8 position Rx FIFO

static void sm_config_set_out_pins (pio_sm_config *c, uint out_base, uint out_count)

Sets the “out” pins in a state machine configuration. out_base is the number of the first pin and
out_count is the number of pins.

static void sm_config_set_set_pins (pio_sm_config *c, uint set_base, uint set_count)

Sets the “set” pins in a state machine configuration. set_base is the number of the first pin and
set_count is the number of pins.

static void sm_config_set_in_pins (pio_sm_config *c, uint in_base)

Sets the “in” pins in a state machine configuration. in_base is the number of the first pin and in_-

count is the number of pins.

static void sm_config_set_sideset (pio_sm_config *c, uint bit_count, bool optional, bool

pindirs)

Sets the “side set” pins in a state machine configuration. sideset_base is the number of the first pin,
bit_count is the number of pin. If optional is true, an additional bit in the side-set field will indicate
if side-set is to be used for each instruction. If pindirs is true, side set will affect pin directions instead
of values.

static void sm_config_set_wrap (pio_sm_config *c, uint wrap_target, uint wrap)

Configures program wrapping in a state machine configuration. When execution reaches the offset
wrap the machine will jump to wrap_target.

static void sm_config_set_jmp_pin (pio_sm_config *c, uint pin)
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Sets, in a state machine configuration, the pin tested by the JMP instruction to pin

static void sm_config_set_mov_status (pio_sm_config *c, enum pio_mov_status_type

status_sel, uint status_n)

Defines, in a state machine configuration, what will be the STATUS source in the MOV instruction.
The options for status_sel are:

• STATUS_TX_LESSTHAN STATUS will be all-ones if TX FIFO level < status_n, otherwise all-zeros
• STATUS_RX_LESSTHAN STATUS will be all-ones if RX FIFO level < status_n, otherwise all-zeros

Miscellaneous Functions

static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num)

Clears a PIO interrupt flag.

static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num)

Returns true if the interrupt flag is set, false if it is cleared.

static void pio_sm_exec (PIO pio, uint sm, uint instr)

Execute the instruction instr in the State Machine sm (0 a 3) of PIO pio.

Examples

Here I am listing only the .pio file for each example. The associate CMakeLists.txt and .c file are in
the github repository,

A simple square wave generator

Let’s start simple.

The following program changes a pin between high and low. The pins is updated by SET PINS

instructions. Auto-wrap will make the execution wrap back to the beginning when the last
instruction is executed.

From where does the sqwave_program_get_default_config() function comes? It is created by the
pio assembler and goes into the squarewave.pio.h include file. This function calls
pio_get_default_sm_config() and changes the configurations related to the directives wrap, wrap_-
target and side_set.
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Square Wave Generator

1 ;

2 ; Square Wave Generator - PIO Exemple for 'Knowing the RP2040' book

3 ; Copyright (c) 2022, Daniel Quadros

4 ;

5

6 .program sqwave

7

8 .wrap_target

9 set PINS, 1

10 set PINS, 0

11 .wrap

12

13 % c-sdk {

14 // Helper function to set a state machine to run our PIO program

15 static inline void sqwave_program_init(PIO pio, uint sm, uint offset, uint pin,

16 float freq) {

17

18 // Get an initialized config structure

19 pio_sm_config c = sqwave_program_get_default_config(offset);

20

21 // Map the state machine's SET pin group to one pin, namely the `pin`

22 // parameter to this function.

23 sm_config_set_set_pins(&c, pin, 1);

24

25 // Set this pin's GPIO function (connect PIO to the pad)

26 pio_gpio_init(pio, pin);

27

28 // Set the pin direction to output at the PIO

29 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

30

31 // Configure the clock, the period of the square wave will two PIO cycles

32 float div = clock_get_hz(clk_sys) / (freq * 2);

33 sm_config_set_clkdiv(&c, div);

34

35 // Load our configuration, and jump to the start of the program

36 pio_sm_init(pio, sm, offset, &c);

37

38 // Set the state machine running

39 pio_sm_set_enabled(pio, sm, true);

40 }

41 %}
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Sending data serially

In this example, the PIO gets a 12 bit value from the FIFO and shifts it out through a pin (LSB first).
A pulse (clock) is generated in a second pin for each bit shifted.

The data pin is updated by an OUT PINS instruction and the clock pin is controlled by side set.

Much of the functionality comes from the configuration of the Tx FIFO. By setting auto_pull, the
OSR will be automatically loaded from the FIFO, stalling if there is no data. The direction and
number of bits to shift is also part of the configuration.

Serial Data Transmitter

1 ;

2 ; Serial data/clock transmitter - PIO Example for 'Knowing the RP2040' book

3 ; Copyright (c) 2022, Daniel Quadros

4 ;

5

6 .program serialtx

7 .side_set 1

8

9 .wrap_target

10 out pins,1 side 0

11 nop side 1

12 .wrap

13

14 % c-sdk {

15 // Helper function to set a state machine to run our PIO program

16 static inline void serialtx_program_init(PIO pio, uint sm, uint offset,

17 uint dataPin, uint clockPin, float freq) {

18

19 // Get an initialized config structure

20 pio_sm_config c = serialtx_program_get_default_config(offset);

21

22 // Map the state machine's OUT pin group to one pin, namely the `dataPin`

23 // parameter to this function.

24 sm_config_set_out_pins(&c, dataPin, 1);

25

26 // Map the state machine's SIDE SET pin group to one pin, namely the `clockPin`

27 // parameter to this function.

28 sm_config_set_sideset_pins(&c, clockPin);

29

30 // Set the pins GPIO function (connect PIO to the pad)

31 pio_gpio_init(pio, dataPin);

32 pio_gpio_init(pio, clockPin);
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33

34 // Set the pins directions to output at the PIO

35 pio_sm_set_pindirs_with_mask(pio, sm, (1u << dataPin) | (1u << clockPin),

36 (1u << dataPin) | (1u << clockPin));

37

38 // Set the Tx FIFO

39 sm_config_set_out_shift (&c, true, true, 12);

40 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

41

42 // Configure the clock, the bit time will two PIO cycles

43 float div = clock_get_hz(clk_sys) / (freq * 2);

44 sm_config_set_clkdiv(&c, div);

45

46 // Load our configuration, and jump to the start of the program

47 pio_sm_init(pio, sm, offset, &c);

48

49 // Set the state machine running

50 pio_sm_set_enabled(pio, sm, true);

51 }

52 %}

Receiving clocked serial data

This example receives data sent by the previous example.

We will wait for the clock pin to change from 0 to 1, shift right the data pin into the ISR and wait
for the clock pin to return to 0. For this to work, the clock frequency in the receiver must be greater
than in the transmitter (at least 1.5x faster, as we will execute 3 instructions while the transmitter is
executing 2).

As the ISR is 32 bits, we are shifting to the right and each received value is 16 bits, the result will be in
the upper 16 bits of the words in the FIFO. This is a common issue when doing serial communication
with the PIO. One solution is to use an ARM core to shift data before transmitting or after receiving.
If we are shifting a multiple of 8, we can bypass the SDK functions and access directly the FIFO as
bytes or 16 bit words.

To simplify things, I am imposing that the data pin and clock pin are consecutive. They are mapped
in the IN group so PINS 0 is the data pin and PINS 1 is the clock pin.
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Serial Data Receiver
1 ;

2 ; Serial data/clock receiver - PIO Example for 'Knowing the RP2040' book

3 ; Copyright (c) 2022, Daniel Quadros

4 ;

5

6 .program serialrx

7

8 .wrap_target

9 wait 1 pin 1 // wait for clock high

10 in pins, 1 // shift in data

11 wait 0 pin 1 // wait for clock back to low

12 .wrap

13

14 % c-sdk {

15 // Helper function to set a state machine to run our PIO program

16 static inline void serialrx_program_init(PIO pio, uint sm, uint offset,

17 uint dataPin, float freq) {

18

19 // Get an initialized config structure

20 pio_sm_config c = serialrx_program_get_default_config(offset);

21

22 // Map the state machine's IN pin group to pins starting at `dataPin`

23 sm_config_set_in_pins(&c, dataPin);

24

25 // Set the pins GPIO function (connect PIO to the pad)

26 pio_gpio_init(pio, dataPin);

27 pio_gpio_init(pio, dataPin+1);

28

29 // Set the pins directions to input at the PIO

30 pio_sm_set_pindirs_with_mask(pio, sm, (3u << dataPin), 0);

31

32 // Configure the Rx FIFO

33 sm_config_set_in_shift (&c, true, true, 12);

34 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);

35

36 // Configure the clock, we will use double of the transmitter's clock

37 float div = clock_get_hz(clk_sys) / (freq * 4);

38 sm_config_set_clkdiv(&c, div);

39

40 // Load our configuration, and jump to the start of the program

41 pio_sm_init(pio, sm, offset, &c);

42
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43 // Set the state machine running

44 pio_sm_set_enabled(pio, sm, true);

45 }

46 %}

Interfacing a HC-SR04 Ultrasonic Sensor

The HC-SR04 is a popular distance sensor, with two pins: trigger (input) and echo (output). It will
send an ultrasonic signal when a 10 ms pulse is given to the trigger pin. After that, the echo pin will
stay high until an echo is detected or 38 ms has passed. This sensor works for (at least) distances
between 2.5 cm (150 µs echo) and 4,3 m (25 ms echo).

When wiring this sensor to the RP2040, care must be taken to power it with 5V (I could not get
reliable results if 3.3V) and to add some kind of level conversion for Echo signal. In my tests I used
a resistive divisor:

Connecting the HC-SR04 sensor to the Pi Pico

The first decision is what clock to use in the PIO. As we want to measure (with a good precision) a
time between 150µS and 38ms, a half microsecond cycle (2MHz clock) is a good choice.

The PIO program is not complicated, but there are some PIO instructions peculiarities that need to
be addressed:

• A register can only the initialized (trough the SET instruction) with a value between 0 and 31.
The initial counter value is gotten from the Tc FIFO and moved to the counting register.

• The WAIT instruction has no timeout. If no sensor is connected the program will stall waiting
for echo to go high.

• The JMP instruction can only JMP on a high in a pin. As we are testing for a low, the code is a
little convoluted.
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• When using JMP for a loop, it will jump if the counter is not zero and then decrement. If the
counter is zero it will not jump. A little unusual, but works fine in our case.

The PIO program bellow receives (through the Tx FIFO) the timeout value (I used 150ms) and
sends back (through the Rx FIFO) the remaining counter. From this we can calculate the number of
microseconds for echo to go down. The distance can be found remembering that the signal had to
go and return and the speed of sound is 343m/s (see the main program in github).

HC-SR04 Interface

1 ;

2 ; Interface to HC-SR04 sensor - PIO Example for 'Knowing the RP2040' book

3 ; Copyright (c) 2022, Daniel Quadros

4 ;

5

6 .program hcsr04

7

8 .wrap_target

9 // wait for a request

10 pull

11 mov x, osr // data is timeout

12

13 // generate a 10 usec (20 cycles) trigger pulse

14 set pins, 1 [19]

15 set pins, 0

16

17 // wait for the start of the echo pulse

18 wait 1 pin 0

19

20 // wait for the end of the echo pulse

21 // decrements x each 2 cycles (1 usec)

22 wait_for_echo:

23 jmp pin, continue

24 jmp done

25 continue:

26 jmp x--, wait_for_echo

27 done:

28 mov isr, x

29 push

30 .wrap

31

32 % c-sdk {

33 // Helper function to set a state machine to run our PIO program

34 static inline void hcsr04_program_init(PIO pio, uint sm, uint offset,
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35 uint triggerPin, uint echoPin) {

36

37 // Get an initialized config structure

38 pio_sm_config c = hcsr04_program_get_default_config(offset);

39

40 // Map the state machine's pin groups

41 sm_config_set_set_pins(&c, triggerPin, 1);

42 sm_config_set_in_pins(&c, echoPin);

43 sm_config_set_jmp_pin(&c, echoPin);

44

45 // Set the pins directions at the PIO

46 pio_sm_set_consecutive_pindirs(pio, sm, triggerPin, 1, true);

47 pio_sm_set_consecutive_pindirs(pio, sm, echoPin, 1, false);

48

49 // Make sure trigger is low

50 pio_sm_set_pins_with_mask(pio, sm, 1 << triggerPin, 0);

51

52 // Set the pins GPIO function (connect PIO to the pad),

53 pio_gpio_init(pio, triggerPin);

54 pio_gpio_init(pio, echoPin);

55

56 // Configure the FIFOs

57 sm_config_set_in_shift (&c, true, false, 1);

58 sm_config_set_out_shift (&c, true, false, 1);

59

60 // Configure the clock for 2 MHz

61 float div = clock_get_hz(clk_sys) / 2000000;

62 sm_config_set_clkdiv(&c, div);

63

64 // Load our configuration, and jump to the start of the program

65 pio_sm_init(pio, sm, offset, &c);

66

67 // Set the state machine running

68 pio_sm_set_enabled(pio, sm, true);

69 }

70 %}



Communication Using I2C
I²C is a very popular electrical protocol for connecting all kind of devices to microcontrollers.

I2C Basics

The objective of I²C is to allow the simple short distance connection of multiple low-to-medium
speed devices. While it was initially envisioned for in-board connections between integrated circuits
(hence the name Inter-Integrated Circuit), today you can find many modules (like sensors, displays
and real-time clocks) that use it.

I2C Topology

I²C is organized as a multiple drop bus, using only two connection (“wires”).

I²C distinguishes between masters (or controllers) and slaves (or targets). I will use the original
terminology (master/slave) as this is what you will find in most of the literature.

I²C Topology

Each slave should have a unique address. All communications are started by a master, that selects
a slave by its address and inform if it should receive or transmit.
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In this text I will concentrate in the most common configuration where there is only one master and
the slaves have 7-bit addresses.

7-bit I²C addresses in the binary form of 0000xxx and 1111xxx are reserved for special functions and
should not be used by slaves.

Electrical Interface

The two signals used by I²C are:

• SCL: this is the clock that marks where are the bits. This line is always driven by the master.
• SDA: this is the data line and is bi-directional.

To allow the direct connection of multiple devices in a single wire, the devices must have:

• An input buffer to read the level in the wire.
• An open drive driver that can pull the wire to low level or allow it to fluctuate.

Pull-up resistors guarantee that the signal is high if no device is pulling it to low. The value of this
resistors depends upon:

• The capacitance of the connection. Higher capacitance requires lower resistors to guarantee
that the signals will change in short time.

• The speed of the communication. Higher speeds require faster signals change which requires
lower resistors

• Allowed power consumption. Lower resistors will consume more power.

In some cases the pull-up resistors in the RP2040 PAD will be enough. Also many modules contain
pull-up resistors.

Connecting 3.3V (like the RP2040) and 5V devices directly in the same I²C bus is not recommended, as
the 3.3V device will be submitted to voltages slightly above 3.3V. Nevertheless, it is common practice
for hobbyists. For professional designs you should use an I²C level converter or use MOSFETs as in
the circuit bellow.
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Interconnection of 3.3V and 5V I²C devices

Some clock speeds (modes) are standardized:

• standard: 100 kbits/s
• fast : 400 kbit/s
• fast plus: 1 Mbit/s
• high-speed: 3.4 Mbit/s
• ultra-fast : 5 Mbit/s

The RP2040 does not support these last two modes.

Start and Stop Conditions

The idle condition is for the two signals be at HIGH level (due to the pull-up resistors, as no one is
pulling the signals down).

During normal communication the transmitter should only change SDA when SCL is LOW. The
receiver will read SDA when SCL changes from LOW to HIGH.

There are two special conditions that violate this rule, to signal the start and end of a transaction:

• A Start condition is generated by pulling SDA LOW while SCL is HIGH. This marks the start
of a transaction.

• A Stop condition is generated by pulling SDA LOW while SCL is LOW, letting SCL go HIGH
and then letting SDA go HIGH. This marks the end of a transaction.

The Stop can be combined with a Start to start a new transaction without release the bus: let SDA
go HIGH then let SCL go HIGH an then pull SDA LOW. This is called a Restart.

This conditions are always generated by the master.
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After a START, the master will send the address of the slave and signal if its a read or write operation:

I²C Start Condition and Device Addressing

In the figure above, the blue areas indicate where the master sets the SDA line and the green areas
indicate where the slave reads the SDA line. The first 7 bits after the start is the slave address, the
last bit is 0 for a write and 1 for a read.

The slave addressed must acknowledge the selection by sending a “0”.

Read Operation

A read operation follows these steps:

• SCL and SDA are high (idle).
• The master pulls down SDA, signaling a start condition. After that the master will pulse SCL
for each bit, the transmitter will change SDAwhen SCL is LOW and the receiver will read SDA
when SCL changes to HIGH.

• The master sends the slave address, followed by a “1” bit (indicating read).
• The slave pulls down SDA, acknowledging the address.
• The slave controls SDA, sends 8 bits and releases SDA.
• The master keeps SDA HIGH for 1 bit to request another byte or pull it LOW (followed by a
STOP condition) to end the transaction.

I²C Read Operation
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Write Operation

A write operation follows these steps:

• SCL and SDA are high (idle).
• The master pulls down SDA, signaling a start condition. After that the master will pulse SCL
for each bit, the transmitter will change SDAwhen SCL is LOW and the receiver will read SDA
when SCL changes to HIGH.

• The master sends the slave address, followed by a “0” bit (indicating write).
• The slave pulls down SDA, acknowledging the address.
• The master controls SDA, sends 8 bits and releases SDA.
• The slave pulls down SDA, acknowledging the data.
• The previous two steps can be repeated for more bytes
• The master sends a STOP condition to signal the end of the transaction

I²C Write Operation

Combined Write/Read Operation

Many devices use some kind of internal addressing, such as a memory address or a register address.
This address is normally sent by the master as the first bytes written. As a result, a read operation
on a device is actually an I²C write transaction followed by an I²C read transaction. This is a good
opportunity to combine the STOP and START condition.

In the examples we will see this when interfacing a EEPROM.

I2C in the RP2040

The RP2040 has two I²C peripherals with the following features:
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• Can be used as master or slave.
• Support for standard, fast and fast plus mode.
• Supports 10-bit address in master mode
• 16 position transmit and receive FIFOs
• Can generate interrupts and work with DMA

Each position in the FIFOs can hold not only the byte to transmit, but also flags. In the receive FIFO,
a flag signals if the data is the first byte received after the address. In the transmit FIFO, flags select
read or write operation and control restart and stop condition generation. As a result of this controls
been together with the data, a zero length operation is not supported.

Clock Generation

In master mode, clock is generate from clk_sys by the I²C peripheral. The hardware gives fine
control over the clock with the following configurations:

• mode (standard, fast or fast plus)
• low, high and minimum data setup times

The SDK functions programs the appropriate values from the baud rate.

Pins Options

he RP2040 has a somewhat flexible mapping of pins for the serial interfaces (UART, SPI and I2C).

The options for I2C0 are:

Function GPIOs
SDA 0, 4, 8, 12, 16, 20, 24, 28
SCL 1, 5, 9, 13, 17, 21, 25, 29

The options for I2C1 are:

Function GPIOs
SDA 2, 6, 10, 14, 18, 22, 26
SCL 3, 7, 11, 15, 19, 23, 27

Selected SDK Functions

The I²C functions are in the library hardware_i2c. The i2c parameter should be i2c0 or i2c1.

uint i2c_init (i2c_inst_t *i2c, uint baudrate)
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Initializes a I²C peripheral for master mode, setting the clock configurations for baudrate. For slave
mode, call i2c_set_slave_mode after this function; baudrate must be informed (although clock is
not generated in this case) for right configuration.

This function must be called before the others.

Returns the actual baudrate.

void i2c_set_slave_mode (i2c_inst_t *i2c, bool slave, uint8_t addr)

Changes mode between master (slave = false) and slave (slave = true). In slave mode addr is the
slave address.

static void i2c_write_raw_blocking (i2c_inst_t *i2c, const uint8_t *src, size_t len)

This routine will put into the transmit FIFO len bytes starting at src, waiting for space available at
the FIFO.

This function is mainly for slave-mode operation; the bytes at the FIFO will be sent as requested by
the master.

int i2c_write_blocking (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len,

bool nostop)

static int i2c_write_timeout_us (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src,

size_t len, bool nostop, uint timeout_us)

int i2c_write_blocking_until (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t

len, bool nostop, absolute_time_t until)

These routines are mainly for master-mode operation and will try to send len bytes starting from
src. addr is the slave address (a valid address must be given even in slave mode).

If nonstop is false, a STOP condition will be generated after the last byte. In master mode a START
condition will initiate the next transfer.

If nonstop is true, the STOP condition will not be generated and a RESTART will be used at the start
of the next transfer.

The blocking version will block indefinitely until all bytes are transfered (or the address is not
acknowledged).

The timeout_us version allows to specify a timeout, in microseconds, for the entire transaction to
complete.

In the until version the timeout is specified by a maximum finish time.

Returns the number of bytes sent or PICO_ERROR_TIMEOUT(in case of a timeout) or PICO_ERROR_-

GENERIC (if something else went wrong, like the device not acknowledging the address).

static void i2c_read_raw_blocking (i2c_inst_t *i2c, uint8_t *dst, size_t len)

This routine will put len bytes from the receive FIFO into the memory starting at dst, waiting for
data available at the FIFO.
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This function is mainly for slave-mode operation.

int i2c_read_blocking (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool

nostop)

static int i2c_read_timeout_us (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len,

bool nostop, uint timeout_us)

int i2c_read_blocking_until (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len,

bool nostop, absolute_time_t until)

These routines are mainly for master-mode operation and will try to read len bytes to the memory
starting at dst. addr is the slave address (a valid address must be given even in slave mode).

If nonstop is false, a STOP condition will be generated after the last byte. In master mode a START
condition will initiate the next transfer.

If nonstop is true, the STOP condition will not be generated and a RESTART will be used at the start
of the next transfer.

The blocking version will block indefinitely until all bytes are transfered (or the address is not
acknowledged).

The timeout_us version allows to specify a timeout, in microseconds, for the entire transaction to
complete.

In the until version the timeout is specified by a maximum finish time.

Returns the number of bytes read or PICO_ERROR_TIMEOUT(in case of a timeout) or PICO_ERROR_-

GENERIC (if something else went wrong, like the device not acknowledging the address).

static size_t i2c_get_write_available (i2c_inst_t *i2c)

Returns the number of empty positions in the transmit FIFO (the number of bytes that can be written
without blocking).

static size_t i2c_get_read_available (i2c_inst_t *i2c)

Returns the number of filled positions in the receive FIFO (the number of bytes that can be read
without blocking).

static uint i2c_get_dreq (i2c_inst_t *i2c, bool is_tx)

Returns the DREQ to use for transferring data via DMA to/from the I²C peripheral. is_tx specifies
the direction (true = transfer data to transmit, false = transfer received data).

Examples

I2C Scanner

The fact that a slave must acknowledge its address allows do find the addresses of the devices
connected to a master. We just need to do a dummy 1 byte read at all 127 address (except the
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reserved ones) and check which are acknowledged. This is what this example does.

I²C Scanner

1 /**

2 * @file i2cscanner.c

3 * @author Daniel Quadros

4 * @brief Finding out the addresses of connected I2C devices

5 * @version 0.1

6 * @date 2022-07-28

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include "stdio.h"

13 #include "pico/stdlib.h"

14 #include "hardware/i2c.h"

15

16 // Select I2C and Pins

17 #define I2C_ID i2c0

18 #define I2C_SCL_PIN 17

19 #define I2C_SDA_PIN 16

20

21 // I2C Configuration

22 #define BAUD_RATE 100000 // standard 100KHz

23

24 // Main Program

25 int main() {

26 // Start stdio and wait for USB connection

27 stdio_init_all();

28 while (!stdio_usb_connected()) {

29 sleep_ms(100);

30 }

31

32 // Set up I2C

33 uint baud = i2c_init (I2C_ID, BAUD_RATE);

34 printf ("I2C @ %u Hz\n", baud);

35

36 // Set up the I2C pins

37 gpio_set_function(I2C_SCL_PIN, GPIO_FUNC_I2C);

38 gpio_set_function(I2C_SDA_PIN, GPIO_FUNC_I2C);

39 gpio_pull_up(I2C_SCL_PIN);

40 gpio_pull_up(I2C_SDA_PIN);
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41

42

43 printf("Scanning I2C devices...\n");

44 printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F\n");

45

46 for (int addr = 0; addr <= 0x7F; ++addr) {

47 if ((addr % 16) == 0) {

48 printf("%02x ", addr);

49 }

50

51

52 // scan only non-reserved address

53 int ret = PICO_ERROR_GENERIC;

54 if (((addr & 0x78) != 0) && ((addr & 0x78) != 0x78)) {

55 uint8_t rxdata;

56 ret = i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);

57 }

58 printf(ret < 0 ? "." : "X");

59 printf((addr % 16) == 15 ? "\n" : " ");

60 }

61 printf("Done.\n");

62

63 // Main loop

64 while (1) {

65 sleep_ms(1000);

66 }

67 }

You can test this example with the next example circuit.

Using a 24C32 EEPROM

The 24C IC series features Electrical Eraseable Programmable Read-Only Memories (EEPROM) of
various sizes with I²C interface. EEPROM are non-volatile memories (that is, they retain their data
when not powered) that can be reprogrammed in-circuit (so not really “read-only”). While EEPROM
can be read as many times as needed, writing (or, more precisely, erasing) can be done only a number
of time and takes much more time than reading.

EEPROMs are good for storing configuration and all kind of data that needs to be kept even if the
circuit is powered down.

In this example we will use a 24C32 that has 32 kbits (organizes as 4 kbytes). The datasheet for
Atmel’s AT24C32 specifies data retention of 100 years, 1 million write cycles and a write time of 10
ms maximum. The I²C interface can operate at up to 100kHz at 3.3V (and up to 400kHz at 5V).
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Connecting the 24C32 to the Raspberry Pi Pico

Accessing the 24C32

1 /**

2 * @file i2c24c32.c

3 * @author Daniel Quadros

4 * @brief Accessing a 24C32 EEProm using I2C

5 * @version 0.1

6 * @date 2022-07-28

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include "stdio.h"

13 #include "pico/stdlib.h"

14 #include "hardware/i2c.h"

15

16 // Select I2C and Pins

17 #define I2C_ID i2c0

18 #define I2C_SCL_PIN 17

19 #define I2C_SDA_PIN 16

20

21 // I2C Configuration

22 #define BAUD_RATE 100000 // standard 100KHz

23

24 // EEProm

25 #define EEPROM_ADDR 0x50

26 #define PAGE_SIZE 32

27
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28 // Main Program

29 int main() {

30 // Start stdio and wait for USB connection

31 stdio_init_all();

32 while (!stdio_usb_connected()) {

33 sleep_ms(100);

34 }

35

36 // Set up I2C

37 uint baud = i2c_init (I2C_ID, BAUD_RATE);

38 printf ("I2C @ %u Hz\n", baud);

39

40 // Set up the I2C pins

41 gpio_set_function(I2C_SCL_PIN, GPIO_FUNC_I2C);

42 gpio_set_function(I2C_SDA_PIN, GPIO_FUNC_I2C);

43 gpio_pull_up(I2C_SCL_PIN);

44 gpio_pull_up(I2C_SDA_PIN);

45

46

47 printf("I2C Example: 24C32 EEPROM\n");

48

49 // Fill the first 256 bytes with 0x00 to 0xFF, using Page Write

50 uint8_t value = 0;

51 uint8_t buffer[PAGE_SIZE+2];

52 for (uint16_t addr = 0; addr < 0xFF; addr += PAGE_SIZE) {

53 // Write a page

54 printf ("\rWriting at 0x%02X", addr);

55 buffer[0] = addr >> 8;

56 buffer[1] = addr & 0xFF;

57 for (int i = 0; i < PAGE_SIZE; i++) {

58 buffer[i+2] = value++;

59 }

60 int ret = i2c_write_blocking (I2C_ID, EEPROM_ADDR, buffer, PAGE_SIZE+2, fals\

61 e);

62 if (ret == (PAGE_SIZE+2)) {

63 // Wait for write to complete

64 // 24C32 will acknoledge address only when writting finished

65 while (i2c_read_blocking(I2C_ID, EEPROM_ADDR, buffer, 1, false) != 1) {

66 sleep_ms(1);

67 }

68 } else {

69 printf ("*** Something went wrong ***\n");

70 }
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71 }

72 printf ("\rWriting concluded.\n");

73

74 // Dump the first 256 bytes using sequential read

75 printf ("Reading EEPROM:\n");

76 uint8_t bufferRx[16];

77 for (uint16_t addr = 0; addr < 0xFF; addr += 16) {

78 buffer[0] = addr >> 8;

79 buffer[1] = addr & 0xFF;

80 int ret = i2c_write_blocking (I2C_ID, EEPROM_ADDR, buffer, 2, true);

81 if (ret == 2) {

82 ret = i2c_read_blocking(I2C_ID, EEPROM_ADDR, bufferRx, 16, false);

83 if (ret == 16) {

84 printf ("0x%02X:", addr);

85 for (int i = 0; i < 16; i++) {

86 printf (" %02X", bufferRx[i]);

87 }

88 printf ("\n");

89 }

90 }

91 }

92 printf("Done.\n");

93

94 // Main loop

95 while (1) {

96 sleep_ms(1000);

97 }

98 }

A few points about the code:

• Multiple bytes can be written using the page write. This writes must stay inside 32 byte pages.
• The EEPROM will ignore all operations while a write is in progress. We can check the end of
the writing by trying to address the 24C32, it will acknowledge only when its ready for another
operation.

• Multiple bytes can be read using sequential read. This reads are not limited by the write pages.
• To do a memory read, first the initial address is written ana them the bytes are read.



Asynchronous Serial Communication:
the UARTs
Asynchronous serial communication is one of the oldest form of serial communication. Bits are sent
serially (one after the other) over a wire with no common clock signal to synchronize the receiver
to the transmitter and determine where are the individual bits. A communication speed (called, not
precisely, baud rate) must be previously agreed by the two sides.

The RP2040 has two UARTs, with the following features:

• 32 position queues (FIFOs - First In First Out) for transmission and reception
• programmable baud rate generator
• support for 5, 6, 7 and 8 bits of data, 1 or 2 stop bits, parity none, even or odd (see framing in
the next section)

• break detection and generation
• support for hardware flow control
• interrupt and DMA support

The UARTs in the RP2040 are based on the PL011 (a standard UART design by ARM), but does not
implements all its features.

Framing

When no communication is taking place, the signal stays at a high (“1”) level.

Individual words (typically a byte) are sent as a “frame” composed of:

• start bit: The signal goes to low level and stays there for a “bit time” (as defined by the baud
rate). The change from high to low signals the receiver that a frame is starting and is used to
determine where individual bits will be.

• data bits: The individual bits of the word. The least significant bit is send first and the most
significant bit is send last.

• parity bit: optional bit used to detect communication errors. If using even parity, the total
number of “1” bits (considering the data bits and the parity bit) is even. In odd parity the total
number of “1” bits is odd.
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• stop bit(s): the signal is kept at high level to signal the end of the frame. Some really old
equipment required two stop bits (that is, that the signal was kept high for at list two bit
times before the next start bit), but nowadays one stop bit is standard. As the beginning of the
next start bit is asynchronous to the stop bits, the line can be keep high for anytime after the
minimum stop bit.

UART Framing - Transmission of 0x35 7 bits, even parity

A special condition (called break) is signaled by keeping the signal at low level for a whole frame
(or more).

FIFOs

Each UART has two FIFOs, one for reception and one for transmission.

The transmission FIFO can store up to 32 8-bit words. Data written to this FIFO will be consumed
by the transmitter. The Tx FIFO can be disabled to act like a single data-to-transmit register.

The reception FIFO holds 32 12-bit words. The Rx FIFO can be disabled to act like a single data-
received register. The received data is in the lower 8 bits, the upper 4 bits contains the following
flags:

• bit 11: OE (Overrun Error). This bit will be one if data is received when the FIFO is full,
indicating that data was lost. This bit is not associated with the received data, it will only
return to zero when a new frame is received and there is space for it in the FIFO.

• bit 10: BE (Break Error). If a break condition is detected, a word with this bit set and data equals
zero will be put in the FIFO. A new word will be generated only after the line goes back to high
level (ending the break condition).

• bit 9: PE (Parity Error). This bit will be one if data is received with the wrong parity;
• bit 8: FE (Framing Error). This bit will be one if a valid stop bit is not detected. This can be
caused by a communication error, wrong frame format or wrong baud rate.

Control Signals and Hardware Flow Control

PC users may recall the use of serial communications with modems and phone lines to connect
to the Internet. Standards define a number of control signals between a computer (or DTE - Data
Transmission Equipment) and a modem (or DCE - Data Communication Equipment).
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While the registers for the UARTs refer to many of these signals (manly for compatibility with the
chips used in old IBM PCs), the RP2040 actually supports only two of them:

• RTS (Request To Send) this is an output signal that goes (in the standard) to high level to
indicate that the DTE wants to transmit

• CTS (Clear To Send) this an input signal, high level means that the DCE can accept data from
the DTE

The use of these signals is called hardware flow control as opposed to software flow control
(where special characters or messages in the data signal when transmission must stop).

The RP2040 UARTs support the use of RTS and CTS in a non-standard way to control reception
and/or transmission:

• In RTS flow control, the RTS signal is used to inform the other side when to transmit. It will be
high as long as there is a configurable space in the reception queue. When the reception queue
fills up, RTS goes down to inform the other side to stop transmission.

• In CTS flow control, transmission of each word only starts when CTS is high.

To use the hardware flow control, RTS and CTS pins must be configured and flow control enabled.

In a typical hardware flow control configuration, you will enable both options and cross the RTS
and CTS signals of the two sides.

Baud Rate Generation

Strictly speaking, baud rate is the number of symbols transmitted per unit of time while bits per
second (bps) is the number of bits transmitted per second. In the UART a symbol is one bit, so it is
common to use the term baud rate when bits per second would be more appropriate.

The UART will generate the baud rate from its clock clk_peri (FUARTCLK in the docs) using a
fractional divider, as long as

• clk_peri is at least 16 times the baud rate
• clk_peri is at most 16*65535 times the baud rate
• clk_peri is at most 5/3 of the processor clock clk_sys(FPCLK in the docs)

The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. It
divides the UART clock to generate an internal Baud16 clock that is 16 times the baud rate.

For example, suppose we are using the standard 125MHz for clk_sys and clk_peri. To generate
9600 bps we need to use a divisor of 125000000/(169600) = 813.802. 813 is the integer part, the 6-bit
fractional part is integer (0.80264+0.5) = 51.

Note that the resulting baud is not exact, as 51/64 = 0.796875, The actual baud rate (not taking in
account the clock precision) is 125000000/(16*813.796875) = 9600.06 (a very low error).

These calculations can be done by the uart_set_baudrate() function in the SDK.
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UART Status and Interrupts

In the RP2040, the UART uses a single combined interrupt in the processors (UARTIMTR). There are
eleven possible reasons for this interrupt and they can be independently masked:

• UARTMSINTR: modem status interrupt, generated when a modem status changes (in the
RP2040 this can only be the CTS signal, the PL011 has provision for DCD, DSR and RI, totaling
four possible sources). It is cleared by writing a 1 to the corresponding bit(s) in the Interrupt
Clear Register (UARTICR).

• UARTRXINTR: receive interrupt. When the FIFO is enabled, this interrupt will be asserted
when the FIFO reaches a programmable level. It will be cleared when the FIFO level drops
bellow another programmable level (by reading the received data) or by writing a 1 to the
corresponding bit(s) in the Interrupt Clear Register. If the FIFO is not enabled, both levels are
one (that is, the interrupt will be assert when a byte is received and cleared when this byte is
read - or the interrupt is cleared in the UARTICR).

• UARTTXINTR: transmit interrupt. When the FIFO is enabled, this interrupt will be asserted
when the FIFO level is equal or lower a programmable level. It will be cleared when the FIFO
level get above another programmable level (by transmitting the data in the FIFO) or by writing
a 1 to the corresponding bit(s) in the Interrupt Clear Register. If the FIFO is not enabled, both
levels are one (that is, the interrupt will be assert when the transmitter is free and cleared when
the transmitter is busy - or the interrupt is cleared in the UARTICR).

• UARTRTINTR: receive timeout interrupt. This interrupt is assert when no data is received in
32 bit time and there is data in the FIFO. It is cleared when the FIFO is emptied (by reading
the data) or by writing a 1 to the corresponding bit in the Interrupt Clear Register (UARTICR).
This interrupt is normally used when the FIFO level for UARTRXINTR is greater than one, so
data is not “forgotten” in the FIFO.

• UARTEINTR: error interrupt. Here we have the four errors we seem before: framing, parity,
break detect and overrun. It can be cleared by writing to the relevant bits of the Interrupt Clear
Register.

The programmable levels in the FIFO for the transmit and receive exists to reduce the number (and
overhead) of interrupts.

Using the transmit interrupt requires a little logic:

• Start with the transmit interrupt disabled
• When you have something for transmission, first check if you can just put it in the UART FIFO.
If so, there is no need for an interrupt. If the UART FIFO is full, you store the data in a FIFO of
your own and enable the transmit interrupt.

• In the transmit interrupt, check if there is data in your FIFO. If so, move it to the UART FIFO
and keep the interrupt enabled. If there is nothing to put in the FIFO, disable the transmit
interrupt.
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Pins Options

The RP2040 has a somewhat flexible mapping of pins for the serial interfaces (UART, SPI and I2C).

The options for UART0 are:

Function GPIOs
Tx 0, 12, 16, 28
Rx 1, 13, 17, 29
CTS 2, 14, 18
RTS 3, 15, 19

The options for UART1 are:

Function GPIOs
Tx 4, 8, 20, 24
Rx 5, 9, 21, 25
CTS 6, 10, 22, 26
RTS 7, 11, 23, 27

Selected SDK Functions

These functions are the library hardware_uart.

In this functions, uart should be uart0 or uart 1.

uint uart_init (uart_inst_t *uart, uint baudrate)

Initialize a UART, baudrate is in bps. Must be called before the other functions. Returns the actual
baudrate programmed.

uint uart_set_baudrate (uart_inst_t *uart, uint baudrate)

Change the baudrate of a UART. Returns the actual baudrate programmed.

static void uart_set_hw_flow (uart_inst_t *uart, bool cts, bool rts)

Turns on or off the hardware flow control options.

static void uart_set_format (uart_inst_t *uart, uint data_bits, uint stop_bits, uart_-

parity_t parity)

Set the format of the data sent and received:

• data_bits must be between 5 and 8
• stop_bits must be 1 or 2
• parity must be one of the following: UART_PARITY_NONE, UART_PARITY_EVEN, UART_PARITY_-

ODD
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static void uart_set_irq_enables (uart_inst_t *uart, bool rx_has_data, bool tx_needs_-

data)

Controls the use of the UART interrupts. If rx_has_datais true, enables the receive interrupt (there
is data in the RX FIFO). If tx_needs_datais true, enables the transmit interrupt (the TX FIFO needs
data).

Notice that there is no control (in the SDK) over the thresholds of the FIFO. Enabling the receive
interrupt will also enable the receive timeout interrupt.

static void uart_set_fifo_enabled (uart_inst_t *uart, bool enabled)

Enables or disables the FIFOs in the UART. The RP2040 does not allow independent control over RX
and TX FIFOs, you can have both or none.

static bool uart_is_readable (uart_inst_t *uart)

Return true if there is data in the receive FIFO.

bool uart_is_readable_within_us (uart_inst_t *uart, uint32_t us)

Wait at most us microseconds for data to be available in the receive FIFO. Return true if data is
available or false if the time expired with no data available.

static bool uart_is_writable (uart_inst_t *uart)

Return true if there is space available in the TX FIFO.

static void uart_tx_wait_blocking (uart_inst_t *uart)

Blocks until the TX FIFO and the transmit shift register are empty.

static void uart_putc_raw (uart_inst_t *uart, char c)

Waits for space in the TX FIFO and puts a character in it.

Notes:

• Does not perform CR/LF conversion.
• The function return when the character is put in the FIFO, not when it is sent (this can take
same time if there are more characters in the FIFO and/or hardware flow control is used).

static void uart_putc (uart_inst_t *uart, char c)

Waits for space in the TX FIFO and puts a character in it.

Notes:

• If CR/LF conversion is active (see uart_set_translate_crlf) and c is a line feed (0x0A), this
function will put two characters in the TX FIFO, 0x0D (carriage return) and 0x0A. It will wait
for space in the FIFO before putting each one.
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• The function return when the character is put in the FIFO, not when it is sent (this can take
same time if there are more characters in the FIFO and/or hardware flow control is used).

static void uart_puts (uart_inst_t *uart, const char *s)

Sends a null terminate string. The logic for each character in the string is similar to the one in
uart_putc, except that if CR/LF conversion is active it will not insert a carriage return if the line
feed is already preceded by a carriage return in the string. The ending null is not sent.

The function returns when the last character is put in the FIFO.

static void uart_write_blocking (uart_inst_t *uart, const uint8_t *src, size_t len)

Sends len characters starting form src. Does not perform CR/LF conversion. The function returns
when the last character is put in the FIFO, blocking for space as necessary.

static char uart_getc (uart_inst_t *uart)

Read a character from the UART, will block until one is available in the RX FIFO.

static void uart_read_blocking (uart_inst_t *uart, uint8_t *dst, size_t len)

Reads len characters into dst, blocking as necessary for the characters to be received.

static void uart_set_break (uart_inst_t *uart, bool en)

Turns on or off the transmission of a break condition.

void uart_set_translate_crlf (uart_inst_t *uart, bool translate)

If translate is true, a line feed (0x0A) will be translate to carriage return (0x0D) + line feed in
uart_putc and uart_puts.

static uint uart_get_dreq (uart_inst_t *uart, bool is_tx)

Return the DREQ (DMA Request) for transmitting (is_tx = true) or receiving (is_tx = false).

Using the UART Registers

The functions available in the SDK does not support all the functionality provided by the UARTs. If
you want more control you will have to access the UART Registers.

The complete documentation of the registers available is in the RP2040 datasheet. Here I will just
give a general idea of how this is done.

All registers are mapped into memory. The UART0 and UART1 registers start at base addresses of
0x40034000 and 0x40038000 respectively (defined as UART0_BASE and UART1_BASE in the SDK). Each
register is at an offset of these base addresses.

The SDK defines routines, structures and constants that simplify accessing the UART registers, as
exemplified bellow:
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1 // Tests if Overrun Error is set in the Receive Status Register

2 bool uart_overrun_error(uart_inst_t *uart) {

3 // uart_get_hw(uart) returns the base address of the uart

4 // uart_get_hw(uart)->rsr returns the contents of the recieve status register

5 return !!(uart_get_hw(uart)->rsr & UART_UARTRSR_OE_BITS);

6 }

7

8 // Clear errors in the Receive Status Register

9 void uart_clear_errors(uart_inst_t *uart) {

10 // uart_get_hw(uart) returns the base address

11 // uart_get_hw(uart)->rsr access the recieve status register

12 uart_get_hw(uart)->rsr = 0; // doesn't matter what is written

13 }

14

15 // Set stick one parity

16 // (send and check parity bit as 1)

17 void uart_clear_overrun(uart_inst_t *uart) {

18 // uart_get_hw(uart) returns the base address

19 // &uart_get_hw(uart)->rsr returns the address of the recieve status register

20 // hw_write_masked(&uart_get_hw(uart)->lcr_h, data, mask) write data to

21 // the bits selected by mask

22 hw_write_masked(&uart_get_hw(uart)->lcr_h,

23 UART_UARTLCR_H_PEN_BITS |

24 UART_UARTLCR_H_EPS_BITS |

25 UART_UARTLCR_H_SPS_BITS,

26 UART_UARTLCR_H_PEN_BITS |

27 UART_UARTLCR_H_EPS_BITS |

28 UART_UARTLCR_H_SPS_BITS);

29 }

The definition of the structures and constants can be found at pico-sdk\src\rp2040.

Example

To use this example you need to connect a Pi Pico to a PC.

As modern PCs do not have serial interfaces, you will need a “TTL” serial to USB adapter (sometimes
called an “FDTI adapter”, FDTI is a company that makes serial to USB chips). Care must be taken in
that the the RP2040 works at 3.3V and will be damaged if 5V (the standard voltage for TTL chips) is
applied at any pin. Very few adapters have the option to use 3.3V in the Rx and Tx pin. You can use
a resistive divisor to reduce to 3.3V the voltage inputed in the Rx pin in the Pi Pico:
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Connecting a Serial to USB Adapter

You can also use a Pi Pico as a simple serial to USB converter, see the examples in the USB chapter.

On the software side in the PC, depending on the adapter and OS you may need a driver; this should
be provided by the vendor of the adapter. You will also need a communication program that sends
the characters you type and shows on the screen the received characters. A simple option is the
Serial Monitor in the Arduino IDE. For Windows, PuTTY (availible at putty.org) is a popular option.
For Linux, you may use minicom.

In this example the communication parameters are 300bps (very slow, so you can see the characters
arriving), 8 data bits, no parity and 1 stop bit (“8N1”).

The program will sum decimal numbers:

• The receive interrupt will be use to input decimal numbers, a carriage return (Enter) will signal
the end of the number input. The digits will be echoed (sent back) in the interrupt. When Enter
is received, the interrupt is disabled, so received characters will be stored in the FIFO while the
sum is updated.

• In the main program we will wait for the input of a number, update the sum, transmit it and
re-enable the receive interrupt.
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UART Example
1 /**

2 * @file uartsum.c

3 * @author Daniel Quadros

4 * @brief Example of using the UART

5 * @version 0.1

6 * @date 2022-06-17

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include "stdio.h"

13 #include "pico/stdlib.h"

14 #include "hardware/uart.h"

15 #include "hardware/irq.h"

16

17 // Select UART and Pins

18 #define UART_ID uart0

19 #define UART_TX_PIN 0

20 #define UART_RX_PIN 1

21

22 // UART Configuration

23 #define BAUD_RATE 300

24 #define DATA_BITS 8

25 #define STOP_BITS 1

26 #define PARITY UART_PARITY_NONE

27

28 // UART interrupt requuest

29 int UART_IRQ;

30

31 // Current number and sum

32 volatile int number;

33 volatile bool number_received = false;

34 volatile int sum = 0;

35

36 // Rx interrupt handler

37 void on_uart_rx() {

38 // There can be multiple chars in the FIFO

39 while (uart_is_readable(UART_ID)) {

40 uint8_t ch = uart_getc(UART_ID);

41

42 if (ch == 0x0D) {
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43 // A number was entered

44 // disable interrupt and signal number received

45 irq_set_enabled(UART_IRQ, false);

46 number_received = true;

47 break;

48 } else if ((ch >= '0') && (ch <= '9')) {

49 // Update number, limit to 4 digits

50 number = (number*10 + ch - '0') % 10000;

51 // Echo the digit

52 if (uart_is_writable(UART_ID)) {

53 uart_putc(UART_ID, ch);

54 }

55 }

56 }

57 }

58

59 // Main Program

60 int main() {

61 char msg[30]; // Buffer for sum message

62

63 // Set up UART

64 uart_init(UART_ID, BAUD_RATE);

65 uart_set_hw_flow(UART_ID, false, false);

66 uart_set_format(UART_ID, DATA_BITS, STOP_BITS, PARITY);

67 uart_set_fifo_enabled(UART_ID, true);

68

69 // Set the TX and RX pins

70 gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);

71 gpio_set_function(UART_RX_PIN, GPIO_FUNC_UART);

72

73 // Set up and enable receive interrupt

74 UART_IRQ = UART_ID == uart0 ? UART0_IRQ : UART1_IRQ;

75 irq_set_exclusive_handler(UART_IRQ, on_uart_rx);

76 irq_set_enabled(UART_IRQ, true);

77 uart_set_irq_enables(UART_ID, true, false);

78

79 // Main loop

80 while (1) {

81 if (number_received) {

82 // update sum

83 sum = (sum + number) % 1000000; // limit to 6 digits

84

85 // set up the sum message
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86 sprintf (msg, " Sum:%d\r\n", sum);

87

88 // send sum

89 uart_puts(UART_ID, msg);

90

91 // wait for space in the Tx FIFO, so we can echo received chars

92 while (!uart_is_writable(UART_ID)) {

93 }

94

95 // get ready to receive another number

96 number = 0;

97 number_received = false;

98 irq_set_enabled(UART_IRQ, true);

99 }

100 }

101

102 }



Communication Using SPI
SPI (Serial Peripheral Interface) is a very popular electrical protocol for connecting all kind of devices
to microcontrollers, particularly when high speed is needed (like SD cards and LCD displays).

SPI Basics

SPI is notable for simultaneously transferring data in both directions with a single clock: one bit is
sent and one bit is received with each clock pulse. In situations where you only want to receive some
data you still send something (zeros is a common value but some devices require specific values).

It uses a master/slave multi-drop topology where themaster generates the clock and asserts a signal
that selects the slave. Multiple slaves can be connected to the same data and clock lines of a master,
but each has a separated selection signal.

SPI topology

SPI Signals

SPI uses four signals:
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• SCLK: is the serial clock (an output for the master and input for the slaves)
• MOSI: the master out slave in data signal (an output for the master and input for the slaves)
• MISO: themaster in slave out data signal (an input for the master, output for the selected slave
and high-impedance for non-selected slaves)

• SS: the slave select data signal (an output for the master and input for the slaves). Each slave
has a separated SS signal. In most cases this is an active low signal: it is normally HIGH, a LOW
level asserts the selection.

Some devices use other names for this signals, like SCK, DI, DO and CS.

You will also see references to 3-wire SPI. This is a half-duplex electrical protocol where MOSI and
MISO is combined in a single bi-directional signal. The RP2040 SPI peripheral does not support this
use (but it can be easily implemented with the PIO).

SPI Modes

SPI has four modes based in what is the idle state of the SCLK line and what edge of SCLK is used
to clock the data out and in. This characteristics are called clock polarity (CPOL) and clock phase
(CPHA):

• CPOL=0 means that SCLK idles at LOW level.
• CPOL=1 means that SCLK idles at HIGH level.
• CPHA=0 means that the “out” side changes the data on the trailing edge of the preceding clock
cycle (or before the first cycle if it is the first bit), while the “in” side captures the data on the
leading edge of the clock cycle.

• CPHA=1 means that the “out” side changes the data on the leading edge of the clock cycle,
while the “in” side captures the data on the trailing edge of the clock cycle.

It is common to refer to this combinations by a mode number:

Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

SPI in the RP2040

The RP2040 has two SPI peripherals with the following features:

• Can be used as master or slave
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• Support data size of 4 to 16 bits
• Has 8 position FIFOs for reception and transmission
• Support the four SPI modes
• Flexible clock generation
• Can generate interrupts and work with DMA

The SPI peripheral has also support for two less common SPI variants (Texas Instruments syn-
chronous serial interface and National Semiconductor Microwire) that I won’t describe here.

The RP2040 datasheet and C/C++ SDK use the following names for the SPI signals:

• SCLK: SSPCLK / SCK
• MISO: SSPRXD / RX
• MOSI: SSPTXD / TX
• SS: SSPFSS / CSN

Clock Generation

The clock for master mode is derived from clk_peri by a two stage divisor. The first stage divides
clk_peri by a factor of 2 to 254 (in steps of two). The second stage divides the resulting frequency
by a factor of 1 to 256.

Pins Options

The RP2040 has a somewhat flexible mapping of pins for the serial interfaces (UART, SPI and I2C).

The options for SPI0 are:

Function GPIOs
SCLK 2, 6, 18, 22
MISO 0, 4, 16, 20
MOSI 3, 7, 19, 23
SS 1, 5, 17, 21

The options for SPI1 are:

Function GPIOs
SCLK 10, 14, 26
MISO 8, 12, 24, 28
MOSI 11, 15, 27
SS 9, 13, 25, 29

Note that the SS pin is only relevant when operating in slave mode (the peripheral will automatically
test it). In master mode you have to manually control the slave selection, it can be any digital output
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pin. When you are using SPI to communicate with a single slave it is customary (but no obligatory)
to use one of the SS pin of the peripheral.

Selected SDK Functions

These functions are in hardware_spilibrary. The spi parameter should be spi0 or spi1.

uint spi_init (spi_inst_t *spi, uint baudrate)

Initializes a SPI interface. This function must be called before the others.

The interface is put in master mode and the clock is set to the closer value to baudrate available. If
you want to operate as slave, call spi_set_slave() after this function.

Returns the actual baudrate.

uint spi_set_baudrate (spi_inst_t *spi, uint baudrate)

Sets clock to the closer value to baudrate available.

Returns the actual baudrate.

static void spi_set_format (spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t

cpha, __unused spi_order_t order)

Configures the format for a SPI interface:

• data_bits: 4 to 16
• cpol: clock polarity (SPI_CPOL_0 or SPI_CPOL_1)
• cpha: clock phase (SPI_CPHA_0 or SPI_CPHA_1)
• order: must be SPI_MSB_FIRST

static void spi_set_slave (spi_inst_t *spi, bool slave)

Selects between master (slave false) and slave (slave true) mode.

static bool spi_is_writable (const spi_inst_t *spi)

Returns true if there is space in the transmission FIFO.

static bool spi_is_readable (const spi_inst_t *spi)

Returns true if there is data in the reception FIFO.

static bool spi_is_busy (const spi_inst_t *spi)

Returns true if the SPI is transmitting and/or receiving a frame or the transmit FIFO is not empty.
False means that no data is transferring and no data is waiting in the FIFO to be transmitted.

int spi_write_read_blocking (spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t

len)
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int spi_write16_read16_blocking (spi_inst_t *spi, const uint16_t *src, uint16_t *dst,

size_t len)

Write len items from src and, simultaneously, read len items to dst. Blocks until all data is
transferred.

The first version uses byte buffers and is for data length up to 8 bits. In the second version the buffers
hold 16 bit values.

Returns the number of items transfered.

int spi_write_blocking (spi_inst_t *spi, const uint8_t *src, size_t len)

int spi_write16_blocking (spi_inst_t *spi, const uint16_t *src, size_t len)

Write len items from src and ignore the received data. Blocks until all data is transferred.

The first version uses a byte buffer and is for data length up to 8 bits. In the second version the buffer
hold 16 bit values.

Returns the number of items transfered.

int spi_read_blocking (spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t

len)

int spi_read16_blocking (spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst,

size_t len)

Read len items into dst, sending len items equal to repeated_tx_data. Blocks until all data is
transferred.

The first version uses a byte buffer and is for data length up to 8 bits. In the second version the buffer
hold 16 bit values.

Returns the number of items transfered.

static uint spi_get_dreq (spi_inst_t *spi, bool is_tx)

Returns the DREQ to use for transferring data via DMA to/from the SPI peripheral. is_tx specifies
the direction (true = transfer data to transmit, false = transfer received data).

Example

In this example the RP2040 will be a SPI master communicating with an ADXL345 accelerometer.
Note that the objective here is to show the SPI communication, not how to use the ASXL345 (detailed
information on it can be found in its datasheet).

Note: The ADXL345 can work in I²C, SPI and “3-wire SPI”, depending on its chip select signal and
programming. When working in I²C mode the SO pin selects the address. Because of this, some
ADXL345 boards will have SO connected to ground or Vcc, this connection must be broken for SPI
operation.
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The following figure shows the connections (your ADXL345 board may have a different layout,
check the documentation and be alert to SO tied to ground or Vcc).

ADXL345 connections to the Raspberry Pi Pico

SPI Example

1 /**

2 * @file adxl345.c

3 * @author Daniel Quadros

4 * @brief Example of using the SPI to interface an ADXL345 accelerometer

5 * Details on the ADXL345 can be found in its datasheet

6 * @version 0.1

7 * @date 2022-07-27

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include "stdio.h"

14 #include "pico/stdlib.h"

15 #include "hardware/spi.h"

16

17 // Select SPI and Pins

18 #define SPI_ID spi0

19 #define SPI_SCLK_PIN 18

20 #define SPI_MISO_PIN 16

21 #define SPI_MOSI_PIN 19

22 #define SPI_SS_PIN 17

23
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24 // SPI Configuration

25 #define BAUD_RATE 1000000 // 1 MHz

26 #define DATA_BITS 8

27

28 // ADXL345 Registers

29 #define DEVID 0x00

30 #define BW_RATE 0x2C

31 #define POWER_CTL 0x2D

32 #define DATA_FORMAT 0x31

33 #define DATAX0 0x32

34

35 // This bits are ORed to the register address

36 #define READ_BIT 0x80 // this is a read

37 #define MULTI_BIT 0x40 // multiple bytes are transfered

38

39 // Structure to hold raw accleration values

40 typedef struct

41 {

42 int x;

43 int y;

44 int z;

45 } AccelRaw;

46

47

48 // Local routines

49 static void ADXL345_init (void);

50 static uint8_t ADXL345_readId(void);

51 static void ADXL345_readAccel(AccelRaw *raw);

52

53 // Assert the SS signal

54 static inline void ss_select() {

55 asm volatile("nop \n nop \n nop");

56 gpio_put(SPI_SS_PIN, 0); // Active low

57 asm volatile("nop \n nop \n nop");

58 }

59

60 // Remove SS signal

61 static inline void ss_deselect() {

62 asm volatile("nop \n nop \n nop");

63 gpio_put(SPI_SS_PIN, 1);

64 asm volatile("nop \n nop \n nop");

65 }

66
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67 // Main Program

68 int main() {

69 // Start stdio and wait for USB connection

70 stdio_init_all();

71 while (!stdio_usb_connected()) {

72 sleep_ms(100);

73 }

74 printf("Hello, ADXL345!\n");

75

76 // Set up the SS pin

77 gpio_init(SPI_SS_PIN);

78 gpio_set_dir(SPI_SS_PIN, GPIO_OUT);

79 gpio_put(SPI_SS_PIN, 1);

80

81 // Set up SPI

82 uint baud = spi_init (SPI_ID, BAUD_RATE);

83 printf ("SPI @ %u Hz\n", baud);

84 spi_set_format (SPI_ID, DATA_BITS, SPI_CPOL_1, SPI_CPHA_1, SPI_MSB_FIRST);

85

86 // Set up the SPI pins

87 gpio_set_function(SPI_SCLK_PIN, GPIO_FUNC_SPI);

88 gpio_set_function(SPI_MISO_PIN, GPIO_FUNC_SPI);

89 gpio_set_function(SPI_MOSI_PIN, GPIO_FUNC_SPI);

90

91 // Init the ADXL345

92 ADXL345_init ();

93

94 // Report ADXL345 identification

95 printf ("ID = %o\n", ADXL345_readId());

96

97 // Main loop

98 AccelRaw raw;

99 while (1) {

100 ADXL345_readAccel(&raw);

101 printf ("Accel X=%d Y=%d Z=%d\n", raw.x, raw.y, raw.z);

102 sleep_ms(1000);

103 }

104

105 }

106

107 // Initialize ADXL345

108 static void ADXL345_init () {

109 uint8_t buf[2];
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110

111 // Turn off LOW_POWER and select sample rate

112 buf[0] = BW_RATE;

113 buf[1] = 0x0F; // Maximum sample rate

114 ss_select();

115 spi_write_blocking(SPI_ID, buf, 2);

116 ss_deselect();

117

118 // Select data format

119 buf[0] = DATA_FORMAT;

120 buf[1] = 0x0B; //4wire SPI +/- 16g range, 13-bit resolution

121 ss_select();

122 spi_write_blocking(SPI_ID, buf, 2);

123 ss_deselect();

124

125 // Start measurements

126 buf[0] = POWER_CTL;

127 buf[1] = 0x08;

128 ss_select();

129 spi_write_blocking(SPI_ID, buf, 2);

130 ss_deselect();

131 }

132

133 // Reads ADXL345 identification

134 static uint8_t ADXL345_readId() {

135 uint8_t bufTx[] = { DEVID | READ_BIT, 0x00 };

136 uint8_t bufRx[2] = { 0x55, 0x55 };

137

138 ss_select();

139 spi_write_read_blocking (SPI_ID, bufTx, bufRx, 2);

140 ss_deselect();

141

142 return bufRx[1];

143 }

144

145 // Reads raw acceleration data

146 static void ADXL345_readAccel(AccelRaw *raw) {

147 uint8_t selReg[] = { DATAX0 | READ_BIT | MULTI_BIT};

148 uint8_t buf[6];

149

150

151 ss_select();

152 spi_write_blocking (SPI_ID, selReg, 1); // Selects first register
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153 spi_read_blocking (SPI_ID, 0x00, buf, 6); // Reads 6 registers

154 ss_deselect();

155

156 raw->x = (((int)buf[1]) << 8) | buf[0];

157 raw->y = (((int)buf[3]) << 8) | buf[2];

158 raw->z = (((int)buf[5]) << 8) | buf[4];

159 }

There are a few points I would like to highlight in the code:

• Notice that the SS signal is managed by the gpio functions. Short sequences of NOPs are used
to create a short delay before and after changing this signal.

• The SPI initialization requires calls to spi_init(), spi_set_format and to gpio_set_funcion

(for each pin). The ADXL345 uses SPI mode 3.
• The ID should be octal 345.
• The ADXL345 is organized in registers. At the start of each communication it expects a register
address, plus two bits that inform if we are reading or writing to the register and if this is a
multi-byte operation. In multi-byte operations the register address is incremented with each
byte transfered.

• To configure the ADXL345 in ADXL345_init() we use spi_write_blocking as the ADXL345
will not replay anything.

• To read the ID two bytes needs to be transfered. The first one is the address of the ID register
(plus the READ bit); it is sent from the RP2040 to the ADXL345. The second byte is the ID,
sent from the ADXL345 to the RP2040. I used a single spi_write_read_blocking() call to do
both, I could also use a spi_write_blocking() followed by a spi_read_blocking(), as long as
I didn’t change the SS line between the two calls.

• To read the raw acceleration values (ADXL345_readAccel()) we first write the address of the
first result register plus the bits that indicate that this is a read and we gonna read multiple
bytes. Then we read the six bytes using spi_read_blocking(), as the value sent to the ADX345
is irrelevant.
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Overview

The ADC (Analog to Digital Converter) is used to measure an analog voltage. The result of the
reading is a binary number that is proportional to the voltage.

The ADC in the RP2040 is a SAR ADC (Successive Approximation Register), where the bits of the
12 bit result are generated one at a time (this is transparent to the programmer). It uses a 48 MHz
clocks and can do up to 500 thousand samples per second.

The maximum result plus one (4096) corresponds to an external reference voltage. In the Raspberry
Pi Pico, this reference voltage is the same 3.3V that powers the chip. Damage can occur if a voltage
greater than the reference is applied to an analog input.

There is only one ADC in the RP2040, but it has five inputs (or channels). One is an internal
temperature sensor, the other four are connected to the same pins as GPIO26 to GPIO29. In the
Pi Pico, only three of these pins are available in the castellated pins. You can selected one input at a
time or enable a mode where the channels are automatic changed after each reading.

When a reading is completed, the result can be put in a four element FIFO (First In First Out queue)
where it can be read by the ARM processors. An interrupt can be generated when the FIFO reaches
a configurable level.

Modes of Operation

There are two modes of operation: one-shot and free-running.

In the one-shot mode, the program starts each reading. The ADC input should be selected before
the conversion starts.

In the free-running mode, conversions are started automatically at regular intervals. By default,
a new conversion starts as soon as the previous one is finished (96 cycles, 2 microseconds with
the 48 MHz clock). A divisor (with 16 bits for the integer part and 8 bits for the fractional part)
can be applied to reduce the conversion rate. If the fractional part is zero, each conversions will
take (divisor+1) cycles. If the fractional part is not zero, conversions will take (int(divisor)+1) or
(int(divisor)+2) cycles in such a way that the average will be (divisor+1) cycles.

For example, a divisor of 191 will result in 192 cycles per conversion (the double of the default). A
divisor of 191.5 will alternate equally between 192 and 193 cycles, resulting in a average of 192.5. If
a divisor of 191.25 is used, we will have one 193 cycles delay for each three 192 cycles delay, so the
average will be 192.25.
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A zero divisor causes default behavior.

In free running mode we can automatically sample multiple inputs. A mask defines which of the
5 inputs should be used. The inputs corresponding to ‘1’ bits will be selected in order, after the
conversion for the current selection finishes (this initial selection need not to correspond to a set
bit). For example, a mask of 10011 indicates that channels 0, 1 and 4 will be used (in this order).

Accuracy of the ADC

When using the ADC we need to keep in mind that there are a number of motives, some inside e
some outside the RP2040, for errors in the result. Some of them are:

• Imprecision in the outside circuit used to scale the measured signal to the range of the ADC.
• The outside circuit and/or the ADC input affecting the original signal.
• Electrical noise.
• Non-linearity of the ADC.
• Imprecision and/or variations in the reference voltage.

While the result of the RP2040 ADC have 12 bits, the datasheet gives the Effective Number Of Bits
(ENOB) as 8.7. This means that only about 9 bits are reliable (considering only errors internal to the
RP2040).

Temperature Sensor

The RP2040 includes an internal temperature sensor, connected to channel 4 of the ADC. The
expected voltage given by the sensor is 0.706V at 27 degrees C; this voltage will drop 1.721mV per
additional degree C, which suggests the formula

T = 27 - (voltage - 0.706)/0.001721

Unfortunately, this may not work in most cases as:

• The values can change from device to device
• The drop per degree is not constant, it will change with the temperature
• As the drop per degree is low, small differences in the reference voltage will result in significant
difference in the calculated temperature (the RP2040 datasheet mentions a 4 degree difference
for a 1% change in the reference voltage).

As the sensor is inside the chip, it will measure the chip’s temperature, not the ambient temperature.
So, for most applications, it is not a substitute for an external temperature sensor.

The temperature sensor must be enabled (powered on) before use.
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Selected SDK Functions

The functions for the adc are in the library hardware_adc.

void adc_init (void)

Initializes the ADC hardware.

static void adc_gpio_init (uint gpio)

Prepares a GPIO pin to be used as an ADC input (disables all digital functions). gpiomust be between
26 and 29.

static void adc_select_input (uint input)

Select the ADC input channel. Channels 0 to 3 correspond to GPIO 26 to GPIO29, channel 4 is the
temperature sensor.

static uint adc_get_selected_input (void)

Returns the currently select ADC input channel (0 to 4).

static void adc_set_round_robin (uint input_mask)

input_mask should be between 0 and 0x1F. If input_mask is zero, round robin will be disabled. If not
zero, round robin is enabled and bit 1 in input_mask indicate the channels to be sampled.

static void adc_set_temp_sensor_enabled (bool enable)

If enable is true the temperature sensor will be powered up. If enable is false it will be turned off.

static uint16_t adc_read (void)

Performs an ADC conversion, using single-shot mode. Waits for the result and returns it.

static void adc_run (bool run)

Enables (run true) or disables (run false) the free-running sampling mode.

static void adc_set_clkdiv (float clkdiv)

Sets the ADC clock divisor. The time between samples will be ‘ (1+clkdiv) cycles (if clkdiv‘ is
less than 95 the function will use 95, as the minimum time is 96 cycles).

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_-

fifo, bool byte_shift)

Configures the ADC FIFO:

• if en is true, results are placed in the FIFO.
• if dreq_en, DMA requests will be generated when there is results in the ADC FIFO.
• dreq_thresh defines how many results need to be in the ADC FIFO for a DMA or IRQ request
be generated.
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• if err_in_fifo is true, bit 15 in the results will indicate if an error occurred during conversion.
• if byte_shift is true, the results in ADC FIFO are shift right 4 bits (discarding the lower four
bits). This can be useful if you do not need the full precision and want to DMA results to a byte
buffer (each byte in the buffer will be one result).

static bool adc_fifo_is_empty (void)

Returns true if there is no result in the ADC FIFO.

static uint8_t adc_fifo_get_level (void)

Returns the number of results in the DAC FIFO.

static uint16_t adc_fifo_get (void)

Gets an ADC result from the FIFO. It is unspecified what you get if the FIFO is empty.

static uint16_t adc_fifo_get_blocking (void)

Waits (blocking) until there is data in the ADC FIFO and returns the first result.

static void adc_fifo_drain (void)

Waits for the current conversion (if any) to complete and empties the ADC FIFO (discarding any
results there).

static void adc_irq_set_enabled (bool enabled)

Enables (enabled true) or disables (enabled false) the ADC interrupts.

Example

The following example uses the free-running mode and round-robin sampling to measure the
internal temperature sensor and an external light sensor. The light sensor is just an LDR and a
1k resistor:

Circuit for ADC example
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Here is the code:

ADC Example

1 /**

2 * @file adcdemo.c

3 * @author Daniel Quadros

4 * @brief Example of using the ADC in the RP2040 to read

5 * the internal temperature sensor and a externa light sensor

6 * @version 0.1

7 * @date 2022-07-06

8 *

9 * @copyright Copyright (c) 2022, Daniel Quadros

10 *

11 */

12

13 #include <stdio.h>

14 #include <string.h>

15 #include <stdlib.h>

16

17 #include "pico/stdlib.h"

18 #include "hardware/gpio.h"

19 #include "hardware/adc.h"

20

21 // Where the LDR is connected

22 #define GPIO_LDR 28

23 #define ADC_INPUT_LDR 2

24

25 // Internal temperature sensor

26 #define ADC_INPUT_TEMPSENSOR 4

27

28 // Factor to convert ADC reading to voltage

29 // Assumes 12-bit, ADC_VREF = 3.3V

30 const float conversionFactor = 3.3f / (1 << 12);

31

32 // Main Program

33 int main() {

34 // Init stdio

35 stdio_init_all();

36 while (!stdio_usb_connected()) {

37 sleep_ms(100);

38 }

39 printf("\nADC Example\n");

40
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41 // Init ADC

42 adc_init();

43 adc_set_temp_sensor_enabled(true);

44 adc_set_round_robin ((1 << ADC_INPUT_TEMPSENSOR) | (1 << ADC_INPUT_LDR));

45 adc_select_input (ADC_INPUT_LDR);

46

47 // Reduce the sampling to 1 ms between readings

48 float clkdiv = 0.001f * 48000000.0f - 1;

49 adc_set_clkdiv(clkdiv);

50 adc_fifo_setup (true, false, 0, false, false);

51

52 // Make sure GPIO is high-impedance, no pullups etc

53 adc_gpio_init(GPIO_LDR);

54

55 // Start the ADC

56 adc_run(true);

57

58 // Main loop

59 const int MAX_COUNT = 500;

60 float tempSum, ldrSum;

61 while (1) {

62 tempSum = 0.0f;

63 ldrSum = 0.0f;

64 for (int count = 0; count < MAX_COUNT; count++) {

65 ldrSum += adc_fifo_get_blocking() * conversionFactor;

66 tempSum += adc_fifo_get_blocking() * conversionFactor;

67 }

68 float ldrV = ldrSum/MAX_COUNT;

69 float tempC = 27.0f - (tempSum/MAX_COUNT - 0.706f) / 0.001721f;

70

71 // Print out the averages

72 printf("LDR voltage: %.2f V Temperature: %.2f\n", ldrV, tempC);

73 }

74 }
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Controller
USB (Universal Serial Bus) is an industry standard for the connection of peripheral to hosts. While
simple from a electrical viewpoint (particularly for the USB 1.1 supported by the RP2040), the
protocol used is very complex.

In this chapter I will not delve deeply into the protocol itself, but take a brief look into it and how
the RP2040 and its SDK supports USB in hardware and software.

Thanks to the tinyUSB library, programmers use the USB Controller without worrying too much
about the USB protocol.

USB Basics

Unlike previous serial and parallel interfaces in PCs, USB aims to support a great range of devices
with the same architecture and “infrastructure” (connectors, cables and hubs). The specification has
gone through several upgrades, the RP2040 supports the features of USB 1.x (1.0 and 1.1) that are
now documented in the USB 2.0 specification.

USB 1.x supported two speeds: low (1.5Mbps) and full (12Mbps), this is what the RP2040 supports.
USB 2.0 added the high speed (480Mbps), USB 3.0 added superspeed (5Gbps), latter versions added
superspeed+ (10, 20 and 40GBps). These numbers are the maximum rate that the signals can change,
actual data throughput will be less than that.

In USB 1.x and 2.0 all communication is between a host and a device, and transmission is always
initiated by the host. The RP2040 can operate as a host or as a device.

A USB system has a multiple tier star topology, where a host port connects to multiple devices;
special devices (hubs) create new tiers. A host controller supports a maximum of 127 devices in up
to five tiers.
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USB Topology

As all communications will involve the host, USB (as the name says) is a bus and its bandwidth is
shared by all devices.

A USB device is assigned a device address by the host during its initialization. It may be a composite
devicewith multiple device functions (logical devices) accessible by a single address. For example, a
webcammay have two device functions: a video capture device and a audio capture device. Another
way to implement this is as a compound device, where there is an internal hub; in our example, in a
webcam implemented as a compound device, the internal hub, video and audio capture would each
receive an address.

Inside a device there can be up to 32 endpoints (16 in and 16 out). Communication is based on
pipes, logical connections between the host and an endpoint. Endpoints are numbered from 0 to
15 at initialization, with an additional address bit indicating if it is IN or OUT. Endpoint 0 (IN and
OUT) is used for device configuration. Other endpoints are grouped into interfaces, each interface
corresponds to a device function.

There are four types of transfers in the USB protocol:

• Control: used for the initial configuration of the device by the host and for device-specific
control.
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• Interrupt: these transfers are initiated periodically by the host (at a rate requested by the
endpoint descriptor) and use small packets (up to 8 bytes for low speed and 64 for full speed).
A typical use is for HID devices, like keyboard and mouse.

• Bulk: used for error-free transfer of large amounts of data, when eventual delays are acceptable.
A typical use is mass storage devices.

• Isochronous: used when it is important to transfer data on time, but errors can be tolerated.
Typical uses are video and audio data transfer.

A transfer is divided in transactions, each one a group of two or three packets, always started by a
token packet sent by the host and, unless it is an isochronous transfer, ended by a handshake packet
(used by the receiver to acknowledge that the previous packets where received correct). In an OUT
transaction, the host sends a data packet after the token and the handshake (if used) is sent by the
device. In an IN transaction, the device sends a data packet after the token and the handshake (if
used) is sent by the host. The SETUP transaction is like the OUT transaction, except that the data
packet has always 8 bytes of setup data and there is always a handshake packet.

Except for isochronous transfers, all communication has some kind of error checking (CRC and
message numbering). If the receiver detects an error, the received packet is ignored; this will cause
a timeout and retry by the sender.

USB has very short timeouts. Because of this, data to be sent is normally put in a transmit buffer
and than “armed” to be sent on request (by the hardware) instead of being put in the buffer only
after a request is received.

USB defines a number of device classes. A device class defines the messages that will be exchanged
by the host and the device.

When a device is connected to the bus, a process called enumeration is triggered. In this processes
the host uses standard control transfers to:

• determine the device characteristics.
• assign a address to the device.
• get descriptors for the device, interfaces and endpoints. Descriptors give the host the necessary
information for using its functions. There are also string descriptors that contain human
readable descriptions; other descriptors reference text in this descriptors by an index.

• select a configuration (most devices have a single configuration).

Only after all this is done the device is ready for normal operation.

The figure bellow gives an idea of the relations between the various types of descriptors in a device:
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Relations between USB descriptors

Among the device characteristics there is a vendor id (VID) and a product id (PID). Vendor IDs are
assigned by the USB Implementers Forum (USB-IF), PIDs are assigned by the vendors. Windows
(and other OSs) use VID/PID to select drivers (except for some classes like HID and MSC).

Hardware

USB 1.1 and 2.0 uses two signals for communication, namedD+ andD-. The RP2040 has an integrated
USB 1.1 PHY (physical driver) which interfaces the USB controller with the DP (D+) and DM (D-)
pins of the chip. The PHY takes care of the electrical encoding (how bits and special conditions are
represented in the D+ and D- signals).

It also contains a USB 2.0 controller that handles the low level USB protocol. It can operate in two
ways:

• As a device (mass storage, keyboard and others) operating at full speed.
• As a host (like a PC) that can communicate with Low Speed and Full Speed devices.

The software must configure the USB controller, consume the received data and generate the data
to be sent. A 4K RAM in the controller is used to store the configuration and data.

The two main components of the USB controller (besides the RAM) are the “Serial Rx Engine” and
“Serial Tx Engine”. These engines decode and encode packets, including checking and generating
CRCs (used to detected transmission errors).
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Device Classes

Like mentioned above, a device class is related to the functionality of the device. It defines the
messages exchangedwith the host and, in some cases, the drivers that will be loaded by the operating
system.

The USB-IF has defined many device classes, like the following:

• HID (Human Interface Devices): for devices such as keyboard, mouse, joystick. This class uses
only control and interrupt transfers. The data exchanged must be in structures named reports.
Some custom (simple) devices can be implemented using the HDI class if all they need is to
exchange small packets of data; most OSs have a API to send and receive these packets.

• CDC (Communication Device Class): for communication devices like modem and network
interface. A common use is replacing serial RS232 interfaces.

• MSC (Mass Storage Class): for devices that can store large amounts of data (like pen-drives, SD
cards, disk/CD/DVD drives and tape drives).

• MIDI (Musical Instrument Device Interface): for devices that use USB as the hardware transport
for the MIDI protocol.

TinyUSB

TinyUSB is an open-source cross-platform USB Host/Device stack for embedded systems and is the
official USB stack for the RP2040.

It implements many USB device classes, including HID, CDC, MSC and MIDI. It also allows the
operation as a USB host, supporting HID, CDC and MSC devices.

TinyUSB takes care ofmost of the low level USB stuff and uses callbacks (routines in your code, called
by tinyUSB) to inform of events that need your processing. Since RP2040 C/C++ SDK applications
do not use an Operating System, your code must call periodically some routines from the tinyUSB.

The official repository is at https://github.com/hathach/tinyusb and is referenced by the RP2040
SDK.

The official documentation is at https://docs.tinyusb.org/.

Using the USB

In the Raspberry Pi Pico (and most boards based on the RP2040) the USB pins are connected to a
standard Micro-A or USB-C USB connector.

The firmware in the RP2040 ROM, activated by reseting with the BOOT signal connected to ground,
implements a mass storage that is used to load an application in the Flash.
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It is up to the application to implement the desired functions for the USB. A common use (supported
by the SDK) is to implement a CDC device so data written by the SDK print function can be received
at the PC (with appropriate drivers) as if from a serial port.

To connect a USB device to the RP2040 it must act as an USB host. A USB OTG (On The Go) adapter
is necessary for the Micro-A or USB-C connector.

USB OTG Adaptors

When developing a USB device that will be a product (that is not for your personal use) there are
some formalities you must address:

• You will need a Vendor Id. You get that from USB-IF, by paying a one-time fee (US$6000) or
becoming a USB-IF member (US$5000/year).

• If you want to use the USB logo, you must either became a USB-IF member (US$5000/year) or
pay a license fee (US$3500 for the first two years).

(fees values from https://www.usb.org/getting-vendor-id on May 7, 2022)

If these values seem too hight for you, you may want to take a look at https://github.com/obdev/v-
usb/blob/master/usbdrv/USB-ID-FAQ.txt, but take notice that USB-IF does not agree with this uses.

Most operating systems come with drivers for some device classes (like HID and MSC). If your
device is not in these classes, or you want/need an specific driver, you will have to develop it (not
an easy task and out of the scope of this book).

The HID Device Class

In this section I describe briefly the HID device class (with emphasis on keyboard devices), so you
can follow my examples.

The HID device class tries to encompass many kinds of devices that interact with people. Besides
the common keyboards, mice, joysticks and gamepads, it can support input devices that measure
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some physical dimension (like length, angle, weight and temperature) and simple output devices
(like alphanumeric displays).

The data is exchanged in structures called reports, by means of interrupt transfers (the host will
periodically ask the device for reports). The host can use a set_rate request to ask the device to
only answer requests for reports if there is a change in the report or a minimum time (the idle rate)
has elapsed. An idle rate of zero means that the device will only send a report if there is change in
the data.

To achieve generality, the format of the reports are described by report descriptors. These descriptor
specify the length and type of the data; they can also specify the scaling of physical measurements.

Regarding keyboards, the input reports will signal the pressed keys by means of a list of keycodes
or a bitmap (remember that in and out are from the host point of view).

As analyzing the reports based on the report descriptor can be complicated and a computer’s
keyboard must operate before a USB aware OS is loaded, the USB HID specification includes a
boot protocol that uses a fixed and simplified report oriented to the standard PC keyboard:

• The report has 8 bytes
• The first byte is a bitmap of the state of the modifier keys (right and left shift, control, alt and
GUI/Windows keys)

• The second byte is reserved (zero)
• The remaining 6 bytes have the keycodes of the pressed keys (zeros are used as fillers)

A consequence of this format is that the keyboard can report at most six non-modifier keys pressed
(“6-key rollover”). Also the “auto-repeat” (repeating the key if its kept pressed) must be implemented
in the host.

The association of keycodes to key symbols/functions can vary depending on the keyboard language
and layout.

The HID host code in the tinyUSB stack will select the boot protocol and a zero idle rate when a
HID device is mounted.

An output report is used to control the keyboard LEDs. Again, this task must be implemented by the
host.

Example - Emulating a PC Keyboard

In this simple example we will implement a five key keyboard, supporting only the boot protocol.
The first four keys will generate the codes for 1, 2, 3 and 4 keys at the top of the keyboard, the fifth
key will generate the code for CAPS LOCK. The LED in the Pico board will be used as a CAPS LOCK
LED.
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Typically OSs have a CAPS LOCK state that is global to all attached keyboards. This means that
our CAPS LOCK LED will be on even if CAPS LOCK was activated by another keyboard and if we
activate CAPS LOCK in our keyboard it will affect all other attached keyboards.

Lets see the steps for implementing a keyboard device.

1. In the CMakeLists.txt, add to the libraries tinyusb_device and tiny_usb_board

2. Include a tusb_config.h file. I started from the one at the dev_hid_composite SDK example.
The important part here is setting the number of devices per class in the CFG_TUD_ defines. You
also have to define the buffer size.

3. Include a usb_desciptors.c file. Again, I started from the one at the dev_hid_composite SDK
example. In this file, declare the device, report, configuration and string descriptors. You should
also define here the callbacks that return these descriptors.

4. In the main file (kbddevice.c) initialize the USB stack by calling board_init() and tusb_-

init().
5. In the main loop, call tud_task(). I am also calling a hid_task() that I wrote to do the periodic

check of key presses and releases and send reports as necessary.
6. Implement a series of callback routines. The important one here is tud_hid_set_report_cb that

is called when the host uses SET_REPORT to control the keyboard LEDs.

Notice that I used a dummy VID/PID (0xDEAD, 0xBEEF). You should not use them for a device
that will go “in the wild”.

The wiring for this example is just 5 buttons connected to the Pi Pico GPIOs:

Keyboard devide wiring

The checking of key presses and releases is done by the kbd_check() routine. It will update the
keycodes to be sent in a report. hid_task() periodically call kbd_check() and send a report if
necessary. The actual sending of the report is request by the tud_hid_keyboard_report() function of
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the tinyusb library. This function receives a report_id (zero in our case, as we have only one device),
the modifiers byte (zero as we are not implementing modifier keys like Shift) and the keycode array.

tusb_config.h (partial)

1 //--------------------------------------------------------------------

2 // DEVICE CONFIGURATION

3 //--------------------------------------------------------------------

4

5 #ifndef CFG_TUD_ENDPOINT0_SIZE

6 #define CFG_TUD_ENDPOINT0_SIZE 64

7 #endif

8

9 //------------- CLASS -------------//

10 #define CFG_TUD_HID 1

11 #define CFG_TUD_CDC 0

12 #define CFG_TUD_MSC 0

13 #define CFG_TUD_MIDI 0

14 #define CFG_TUD_VENDOR 0

15

16 // HID buffer size Should be sufficient to hold ID (if any) + Data

17 #define CFG_TUD_HID_EP_BUFSIZE 8

usb_descriptors.c (partial)

1 #include "tusb.h"

2 #include "pico/unique_id.h"

3

4 // You should use your own VID & PID !//

5 #define USBD_VID (0xDEAD)

6 #define USBD_PID (0xBEAF)

7

8 #define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN)

9 #define USBD_MAX_POWER_MA (250)

10

11 #define USBD_STR_0 (0x00)

12 #define USBD_STR_MANUF (0x01)

13 #define USBD_STR_PRODUCT (0x02)

14 #define USBD_STR_SERIAL (0x03)

15

16 //--------------------------------------------------------------------+

17 // Device Descriptors

18 //--------------------------------------------------------------------+

19 static const tusb_desc_device_t usbd_desc_device = {
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20 .bLength = sizeof(tusb_desc_device_t),

21 .bDescriptorType = TUSB_DESC_DEVICE,

22 .bcdUSB = 0x0200,

23 .bDeviceClass = 0x00,

24 .bDeviceSubClass = 0x00,

25 .bDeviceProtocol = 0x00,

26 .bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,

27 .idVendor = USBD_VID,

28 .idProduct = USBD_PID,

29 .bcdDevice = 0x0100,

30 .iManufacturer = USBD_STR_MANUF,

31 .iProduct = USBD_STR_PRODUCT,

32 .iSerialNumber = USBD_STR_SERIAL,

33 .bNumConfigurations = 1,

34 };

35

36 //--------------------------------------------------------------------+

37 // HID Report Descriptor

38 //--------------------------------------------------------------------+

39

40 uint8_t const desc_hid_keyboard_report[] =

41 {

42 TUD_HID_REPORT_DESC_KEYBOARD()

43 };

44

45 //--------------------------------------------------------------------+

46 // Configuration Descriptor

47 //--------------------------------------------------------------------+

48

49 #define CONFIG_TOTAL_LEN (TUD_CONFIG_DESC_LEN + TUD_HID_DESC_LEN)

50

51 #define EPNUM_KEYBOARD 0x81

52

53 uint8_t const desc_configuration[] =

54 {

55 // Config number, interface count, string index, total length, attribute, power in\

56 mA

57 TUD_CONFIG_DESCRIPTOR(1, 1, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEU\

58 P, 100),

59

60 // Interface number, string index, protocol, report descriptor len, EP In address,\

61 size & polling interval

62 TUD_HID_DESCRIPTOR(0, 0, HID_ITF_PROTOCOL_KEYBOARD, sizeof(desc_hid_keyboard_repor\
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63 t), EPNUM_KEYBOARD, CFG_TUD_HID_EP_BUFSIZE, 10),

64 };

65

66 static char usbd_serial_str[PICO_UNIQUE_BOARD_ID_SIZE_BYTES * 2 + 1];

67

68 //--------------------------------------------------------------------+

69 // String Descriptors

70 //--------------------------------------------------------------------+

71

72 static const char *const usbd_desc_str[] = {

73 [USBD_STR_MANUF] = "Raspberry Pi",

74 [USBD_STR_PRODUCT] = "Pico",

75 [USBD_STR_SERIAL] = usbd_serial_str,

76 };

77

78

79 // Invoked when received GET DEVICE DESCRIPTOR

80 const uint8_t *tud_descriptor_device_cb(void) {

81 return (const uint8_t *)&usbd_desc_device;

82 }

83

84 // Invoked when received GET CONFIGURATION DESCRIPTOR

85 const uint8_t *tud_descriptor_configuration_cb(__unused uint8_t index) {

86 return desc_configuration;

87 }

88

89 // Invoked when received GET HID REPORT DESCRIPTOR

90 uint8_t const * tud_hid_descriptor_report_cb(uint8_t instance)

91 {

92 return desc_hid_keyboard_report;

93 }

94

95 // Invoked when received GET STRING DESCRIPTOR request

96 const uint16_t *tud_descriptor_string_cb(uint8_t index, __unused uint16_t langid) {

97 #define DESC_STR_MAX (20)

98 static uint16_t desc_str[DESC_STR_MAX];

99

100 // Assign the SN using the unique flash id

101 if (!usbd_serial_str[0]) {

102 pico_get_unique_board_id_string(usbd_serial_str, sizeof(usbd_serial_str));

103 }

104

105 uint8_t len;
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106 if (index == 0) {

107 desc_str[1] = 0x0409; // supported language is English

108 len = 1;

109 } else {

110 if (index >= sizeof(usbd_desc_str) / sizeof(usbd_desc_str[0])) {

111 return NULL;

112 }

113 const char *str = usbd_desc_str[index];

114 for (len = 0; len < DESC_STR_MAX - 1 && str[len]; ++len) {

115 desc_str[1 + len] = str[len];

116 }

117 }

118

119 // first byte is length (including header), second byte is string type

120 desc_str[0] = (uint16_t) ((TUSB_DESC_STRING << 8) | (2 * len + 2));

121

122 return desc_str;

123 }

kbddevice.c)

1 /**

2 * @file kbddevice.c

3 * @author Daniel Quadros

4 * @brief A five key USB keyboard device

5 * @version 0.1

6 * @date 2022-06-21

7 *

8 * Based in the dev_hid_composite example in the Pico C SDK

9 * that is based in the tinyusb hid_boot_interface example

10 *

11 * Copyright (c) 2019 Ha Thach (tinyusb.org)

12 * @copyright Copyright (c) 2022, Daniel Quadros

13 *

14 */

15

16 #include <stdlib.h>

17 #include <stdio.h>

18 #include <string.h>

19

20 #include "bsp/board.h"

21 #include "tusb.h"

22 #include "pico/stdlib.h"
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23 #include "hardware/gpio.h"

24

25 // Raspberry Pi Pico LED - Used for CAPS LOCK

26 #define LED_PIN 25

27

28 //--------------------------------------------------------------------+

29 // Keyboard control

30 //--------------------------------------------------------------------+

31

32 // Keys are connect between a pin and ground

33 uint kbd_pin[] = { 20, 19, 18, 17, 16 };

34 #define NKEYS (sizeof(kbd_pin)/sizeof(uint))

35

36 // USB codes for the keys

37 uint8_t kbd_code[] = { 0x1E, 0x1F, 0x20, 0x21, HID_KEY_CAPS_LOCK };

38

39 // Are the keys pressed?

40 bool key_pressed[NKEYS];

41 uint nkeys_pressed = 0;

42

43 // Last reported keycodes

44 uint8_t keycode[6] = { 0 };

45

46 //--------------------------------------------------------------------+

47 // Local routines

48 //--------------------------------------------------------------------+

49 void kbd_init(void);

50 void kbd_check(void);

51 void hid_task(void);

52

53 //--------------------------------------------------------------------+

54 // Main Program

55 //--------------------------------------------------------------------+

56 int main(void)

57 {

58 // Initialize the LED

59 gpio_init(LED_PIN);

60 gpio_set_dir(LED_PIN, GPIO_OUT);

61 gpio_put(LED_PIN, 0);

62

63 // Initialize the "keyboard"

64 kbd_init();

65
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66 // Initialize the USB Stack

67 board_init();

68 tusb_init();

69

70 // Main loop

71 while (1)

72 {

73 tud_task();

74 hid_task();

75 }

76

77 return 0;

78 }

79

80 //--------------------------------------------------------------------+

81 // Keyboard

82 //--------------------------------------------------------------------+

83

84 // Keyboard Initialization

85 void kbd_init() {

86 for (int i = 0; i < NKEYS; i++) {

87 uint pin = kbd_pin[i];

88 gpio_init(pin);

89 gpio_set_dir(pin, GPIO_IN);

90 gpio_pull_up(pin);

91 key_pressed[i] = false;

92 }

93 }

94

95 // Check for keys pressed and released and update global variables

96 void kbd_check() {

97 for (int i = 0; i < NKEYS; i++) {

98 bool pressed = !gpio_get(kbd_pin[i]); // pressed = low

99 if (pressed != key_pressed[i]) {

100 // changed state

101 if (pressed) {

102 // Try to put key in report

103 for (int j = 0; j < 6; j++) {

104 if (keycode[j] == 0) {

105 keycode[j] = kbd_code[i];

106 key_pressed[i] = true;

107 nkeys_pressed++;

108 break;
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109 }

110 }

111 } else {

112 // remove from report

113 for (int j = 0; j < 6; j++) {

114 if (keycode[j] == kbd_code[i]) {

115 keycode[j] = 0;

116 key_pressed[i] = false;

117 nkeys_pressed--;

118 break;

119 }

120 }

121 }

122 }

123 }

124 }

125

126 //--------------------------------------------------------------------+

127 // Device callbacks

128 //--------------------------------------------------------------------+

129

130 // Invoked when device is mounted

131 void tud_mount_cb(void) {

132 }

133

134 // Invoked when device is unmounted

135 void tud_umount_cb(void) {

136 }

137

138

139 //--------------------------------------------------------------------+

140 // USB HID

141 //--------------------------------------------------------------------+

142

143 // Send the HID report

144 static void send_hid_report()

145 {

146 // skip if hid is not ready yet

147 if ( !tud_hid_ready() ) {

148 return;

149 }

150

151 // use to avoid send multiple consecutive zero report for keyboard
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152 static bool notified_key = false;

153

154 if (nkeys_pressed) {

155 // We have keys pressed

156 tud_hid_keyboard_report(0, 0, keycode);

157 notified_key = true;

158 } else

159 {

160 // No key pressed, send empty report just one time

161 if (notified_key) {

162 tud_hid_keyboard_report(0, 0, NULL);

163 notified_key = false;

164 }

165 }

166 }

167

168 // Every 10ms, we will sent a report

169 void hid_task(void)

170 {

171 // Poll every 10ms

172 const uint32_t interval_ms = 10;

173 static uint32_t start_ms = 0;

174

175 // Check if is time for an update

176 if ( (board_millis() - start_ms) < interval_ms) {

177 return;

178 }

179 start_ms += interval_ms;

180

181 // Check the keys in the keyboard

182 kbd_check();

183

184 // Remote wakeup

185 if ( tud_suspended() && (nkeys_pressed > 0) )

186 {

187 // Wake up host if we are in suspend mode

188 // and REMOTE_WAKEUP feature is enabled by host

189 tud_remote_wakeup();

190 } else

191 {

192 send_hid_report();

193 }

194 }



A Brief Introduction to the USB Controller 211

195

196 // Invoked when received GET_REPORT control request

197 // Application must fill buffer report's content and return its length.

198 // Return zero will cause the stack to STALL request

199 uint16_t tud_hid_get_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_\

200 t report_type, uint8_t* buffer, uint16_t reqlen)

201 {

202 // TODO not Implemented

203 (void) instance;

204 (void) report_id;

205 (void) report_type;

206 (void) buffer;

207 (void) reqlen;

208

209 return 0;

210 }

211

212 // Invoked when received SET_REPORT control request or

213 // received data on OUT endpoint ( Report ID = 0, Type = 0 )

214 void tud_hid_set_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_t re\

215 port_type, uint8_t const* buffer, uint16_t bufsize)

216 {

217 (void) instance;

218

219 if (report_type == HID_REPORT_TYPE_OUTPUT)

220 {

221 if (bufsize) {

222 // Update the Caps Lock LED

223 gpio_put(LED_PIN, (buffer[0] & KEYBOARD_LED_CAPSLOCK)? 1 : 0);

224 }

225 }

226 }

Example - Connecting a PC Keyboard to the Pi Pico

Now we are going to use the Pi Pico as a host and connect a standard US QWERTY keyboard (using
an OTG adapter). We will only support the boot protocol, with minimum keycode decoding. We will
treat the Caps Lock key and LED, but will not implement auto repeat.

Since will be using the USB to connect the keyboard, the output will be sent to UART0. See in the
UART chapter the options for connecting the UART0 to a PC and see the output.



A Brief Introduction to the USB Controller 212

My code is based on the host_cdc_msc_hid SDK example, that is itself based on the tinyusb cdc_-

msc_hid example. I left only the keyboard support and enhanced it.

The steps for implementing a host that supports a keyboard device are:

1. In the CMakeLists.txt, add to the libraries tinyusb_host and tiny_usb_board

2. Include a tusb_config.h file. I started from the one at the host_cdc_msc_hid SDK example. The
important part here is setting the number of devices per class in the CFG_TUH_ defines. You also have
to define some buffers size.

4. In the main file (kbdhost.c) initialize the USB stack by calling board_init() and tusb_init().
5. In the main loop, call tuh_task(). I am also calling a hid_task() that will update the keyboard

LEDs.
6. Implement a series of callback routines.

To decode the keycodes I am using the HID_KEYCODE_TO_ASCII table that is in tinyusb. As mentioned,
this table is valid for the standard US QWERTY keyboard.

tusb_config.h (partial)

1 //--------------------------------------------------------------------

2 // CONFIGURATION

3 //--------------------------------------------------------------------

4

5 // Size of buffer to hold descriptors and other data used for enumeration

6 #define CFG_TUH_ENUMERATION_BUFSZIE 256

7

8 #define CFG_TUH_HUB 1

9 #define CFG_TUH_CDC 0

10 #define CFG_TUH_HID 4 // typical keyboard + mouse device can have 3\

11 -4 HID interfaces

12 #define CFG_TUH_MSC 0

13 #define CFG_TUH_VENDOR 0

14

15 #define CFG_TUSB_HOST_DEVICE_MAX (CFG_TUH_HUB ? 5 : 1) // normal hub has 4 ports

16

17 //------------- HID -------------//

18

19 #define CFG_TUH_HID_EP_BUFSIZE 64

20 #define CFG_TUH_HID_EPOUT_BUFSIZE 64
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kbdhost.c
1 /**

2 * @file kbdhost.c

3 * @author Daniel Quadros

4 * @brief A USB keyboard host

5 * @version 0.1

6 * @date 2022-06-21

7 *

8 * Based in the host_cdc_msc_hid example in the Pico C SDK

9 * that is based in the tinyusb cdc_msc_hid example

10 *

11 * Copyright (c) 2019 Ha Thach (tinyusb.org)

12 * @copyright Copyright (c) 2022, Daniel Quadros

13 *

14 */

15

16 #include <stdlib.h>

17 #include <stdio.h>

18 #include <string.h>

19

20 #include "bsp/board.h"

21 #include "tusb.h"

22 #include "pico/stdlib.h"

23 #include "hardware/uart.h"

24

25 // Select UART and Pins

26 #define UART_ID uart0

27 #define UART_TX_PIN 0

28 #define UART_RX_PIN 1

29

30 // keycodes translation table

31 #define NKEYS 128

32 static uint8_t const keycode2ascii[NKEYS][2] = {HID_KEYCODE_TO_ASCII};

33

34 #define MAX_KEY 6 // Maximun number of pressed key in the boot layout report

35

36 // Caps lock control

37 static bool capslock_key_down_in_last_report = false;

38 static bool capslock_key_down_in_this_report = false;

39 static bool capslock_on = false;

40

41 // Keyboard LED control

42 static uint8_t leds = 0;
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43 static uint8_t prev_leds = 0xFF;

44

45 // Keyboard address and instance (assumes there is only one)

46 static uint8_t keybd_dev_addr = 0xFF;

47 static uint8_t keybd_instance;

48

49 // Each HID instance has multiple reports

50 #define MAX_REPORT 4

51 static uint8_t _report_count[CFG_TUH_HID];

52 static tuh_hid_report_info_t _report_info_arr[CFG_TUH_HID][MAX_REPORT];

53

54 //--------------------------------------------------------------------+

55 // Local routines

56 //--------------------------------------------------------------------+

57 void serial_init(void);

58 void hid_task(void);

59 static void process_kbd_report(hid_keyboard_report_t const *report);

60

61 //--------------------------------------------------------------------+

62 // Main Program

63 //--------------------------------------------------------------------+

64 int main(void)

65 {

66 // Initialize the UART

67 serial_init();

68

69 // Initialize the USB Stack

70 board_init();

71 tusb_init();

72

73 // Main loop

74 while (1)

75 {

76 tuh_task();

77 hid_task();

78 }

79

80 return 0;

81 }

82

83 //--------------------------------------------------------------------+

84 // UART Initialization

85 //--------------------------------------------------------------------+
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86 void serial_init()

87 {

88 // Set up UART, parameters will be overwritten later

89 uart_init(UART_ID, 115200);

90 uart_set_hw_flow(UART_ID, false, false);

91 uart_set_format(UART_ID, 8, 1, UART_PARITY_NONE);

92 uart_set_fifo_enabled(UART_ID, false);

93

94 // Set the TX and RX pins

95 gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);

96 gpio_set_function(UART_RX_PIN, GPIO_FUNC_UART);

97 }

98

99 //--------------------------------------------------------------------+

100 // This will be called by the main loop

101 //--------------------------------------------------------------------+

102 void hid_task(void)

103 {

104 // update keyboard leds

105 if (keybd_dev_addr != 0xFF)

106 { // only if keyboard attached

107 if (leds != prev_leds)

108 {

109 tuh_hid_set_report(keybd_dev_addr, keybd_instance, 0, HID_REPORT_TYPE_OUTPUT, \

110 &leds, sizeof(leds));

111 prev_leds = leds;

112 }

113 }

114 }

115

116 //--------------------------------------------------------------------+

117 // TinyUSB Callbacks

118 //--------------------------------------------------------------------+

119

120 // Invoked when device with hid interface is mounted

121 void tuh_hid_mount_cb(uint8_t dev_addr, uint8_t instance, uint8_t const *desc_report\

122 , uint16_t desc_len)

123 {

124 // Report descriptor is also available for use. tuh_hid_parse_report_descriptor()

125 // can be used to parse common/simple enough descriptor.

126 _report_count[instance] = tuh_hid_parse_report_descriptor(_report_info_arr[instanc\

127 e], MAX_REPORT, desc_report, desc_len);

128 // Check if at least one of the reports is for a keyboard
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129 for (int i = 0; i < _report_count[instance]; i++)

130 {

131 if ((_report_info_arr[instance][i].usage_page == HID_USAGE_PAGE_DESKTOP) &&

132 (_report_info_arr[instance][i].usage == HID_USAGE_DESKTOP_KEYBOARD))

133 {

134 keybd_dev_addr = dev_addr;

135 keybd_instance = instance;

136 }

137 }

138

139 // request to receive report

140 tuh_hid_receive_report(dev_addr, instance);

141 }

142

143 // Invoked when device with hid interface is un-mounted

144 void tuh_hid_umount_cb(uint8_t dev_addr, uint8_t instance)

145 {

146 keybd_dev_addr = 0xFF; // keyboard not available

147 }

148

149 // Invoked when received report from device via interrupt endpoint

150 void tuh_hid_report_received_cb(uint8_t dev_addr, uint8_t instance, uint8_t const *r\

151 eport, uint16_t len)

152 {

153 uint8_t const rpt_count = _report_count[instance];

154 tuh_hid_report_info_t *rpt_info_arr = _report_info_arr[instance];

155 tuh_hid_report_info_t *rpt_info = NULL;

156

157 if ((rpt_count == 1) && (rpt_info_arr[0].report_id == 0))

158 {

159 // Simple report without report ID as 1st byte

160 rpt_info = &rpt_info_arr[0];

161 }

162 else

163 {

164 // Composite report, 1st byte is report ID, data starts from 2nd byte

165 uint8_t const rpt_id = report[0];

166

167 // Find report id in the arrray

168 for (uint8_t i = 0; i < rpt_count; i++)

169 {

170 if (rpt_id == rpt_info_arr[i].report_id)

171 {
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172 rpt_info = &rpt_info_arr[i];

173 break;

174 }

175 }

176

177 report++;

178 len--;

179 }

180

181 if (rpt_info && (rpt_info->usage_page == HID_USAGE_PAGE_DESKTOP))

182 {

183 switch (rpt_info->usage)

184 {

185 case HID_USAGE_DESKTOP_KEYBOARD:

186 // Assume keyboard follow boot report layout

187 process_kbd_report((hid_keyboard_report_t const *)report);

188 break;

189

190 default:

191 break;

192 }

193 }

194

195 // continue to request to receive report

196 tuh_hid_receive_report(dev_addr, instance);

197 }

198

199 //--------------------------------------------------------------------+

200 // Keyboard

201 //--------------------------------------------------------------------+

202

203 // look up key in a report

204 static inline bool find_key_in_report(hid_keyboard_report_t const *report, uint8_t k\

205 eycode)

206 {

207 for (uint8_t i = 0; i < MAX_KEY; i++)

208 {

209 if (report->keycode[i] == keycode)

210 {

211 return true;

212 }

213 }

214
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215 return false;

216 }

217

218 // process keyboard report

219 static void process_kbd_report(hid_keyboard_report_t const *report)

220 {

221 static hid_keyboard_report_t prev_report = {0, 0, {0}}; // previous report to chec\

222 k key released

223

224 // Check caps lock

225 capslock_key_down_in_this_report = find_key_in_report(report, HID_KEY_CAPS_LOCK);

226 if (capslock_key_down_in_this_report && !capslock_key_down_in_last_report)

227 {

228 // CAPS LOCK was pressed

229 capslock_on = !capslock_on;

230 if (capslock_on)

231 {

232 leds |= KEYBOARD_LED_CAPSLOCK;

233 }

234 else

235 {

236 leds &= ~KEYBOARD_LED_CAPSLOCK;

237 }

238 }

239

240 // check other pressed keys

241 for (uint8_t i = 0; i < MAX_KEY; i++)

242 {

243 uint8_t key = report->keycode[i];

244 if ((key != 0) && (key != HID_KEY_CAPS_LOCK) && !find_key_in_report(&prev_report\

245 , key))

246 { // ignore fillers, Caps lock and keys already pressed

247 // Find corresponding ASCII code

248 uint8_t ch = (key < NKEYS) ? keycode2ascii[key][0] : 0; // unshifted key code,\

249 to test for letters

250 bool const is_ctrl = report->modifier & (KEYBOARD_MODIFIER_LEFTCTRL | KEYBOARD\

251 _MODIFIER_RIGHTCTRL);

252 bool is_shift = report->modifier & (KEYBOARD_MODIFIER_LEFTSHIFT | KEYBOARD_MOD\

253 IFIER_RIGHTSHIFT);

254 if (capslock_on && (ch >= 'a') && (ch <= 'z'))

255 {

256 // capslock affects only letters

257 is_shift = !is_shift;
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258 }

259 ch = (key < NKEYS) ? keycode2ascii[key][is_shift ? 1 : 0] : 0;

260 if (is_ctrl)

261 {

262 // control char

263 if ((ch >= 0x60) && (ch <= 0x7F))

264 {

265 ch = ch - 0x60;

266 }

267 else if ((ch >= 0x40) && (ch <= 0x5F))

268 {

269 ch = ch - 0x40;

270 }

271 }

272

273 if (ch)

274 {

275 // send key code to UART

276 uart_putc_raw(UART_ID, ch);

277 }

278 }

279 }

280

281 // save current status

282 prev_report = *report;

283 capslock_key_down_in_last_report = capslock_key_down_in_this_report;

284 }

Example - Serial USB Adapter

I will not delve into all the details of this example, but I am including it because it can be useful.
Most modern PCs no longer have a RS232 serial interface, asynchronous serial communication must
be done through an adapter that implements the CDC USB class.

In this example I use the tinyusb library to implement a CDC device that will send data received
from the UART0 to the PC and send through the UART0 data received from the PC.

Like previous device examples, this requires:

• setting up configuration in tusb_config.h

• creating and initializing descriptors in usb_descriptors.c

• calling board_init() and tusb_init() at the beginning of the application
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• calling tud_task() in the main loop
• implement a series of callbacks

One thing that may confuse you is tinyusb support for multiple CDC ports. There are two sets of
functions, one with names starting with tud_cdc_n_ and another with names starting with tud_cdc_.
The former has an extra parameter, itf to select the port, the latter assume the first port (itf = 0).
The callbacks will always pass the itf parameter. In my example there is only one port, so I use the
tud_cdc_ functions and ignore the itf parameter in the callbacks.

A concern here is the PC driver for our CDC device. Linux and Windows 10 provide drivers for
generic CDC devices, so you can just plug to the PC. Previous versions of Windows look for an INF
file, based on the VID/PID, so our device will not work.

In this example I am using a dummy VID/PID (0xDEAD, 0xBEEF). You should not use them for a
device that will go “in the wild”.

The functions used for controlling the UART are described in the respective chapter.

tusb_config.h (partial)

1 //--------------------------------------------------------------------

2 // DEVICE CONFIGURATION

3 //--------------------------------------------------------------------

4

5 #ifndef CFG_TUD_ENDPOINT0_SIZE

6 #define CFG_TUD_ENDPOINT0_SIZE 64

7 #endif

8

9 //------------- CLASS -------------//

10 #define CFG_TUD_HID 0

11 #define CFG_TUD_CDC 1

12 #define CFG_TUD_MSC 0

13 #define CFG_TUD_MIDI 0

14 #define CFG_TUD_VENDOR 0

15

16 // CDC FIFO size of TX and RX

17 #define CFG_TUD_CDC_RX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)

18 #define CFG_TUD_CDC_TX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)

19

20 // CDC Endpoint transfer buffer size, more is faster

21 #define CFG_TUD_CDC_EP_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
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usb_descriptors.c (partial)
1 #include "tusb.h"

2 #include "pico/unique_id.h"

3

4 // You should use your own VID & PID !//

5 #define USBD_VID (0xDEAD)

6 #define USBD_PID (0xBEAF)

7

8 #define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN)

9 #define USBD_MAX_POWER_MA (250)

10

11 #define USBD_ITF_CDC (0) // needs 2 interfaces

12 #define USBD_ITF_MAX (2)

13

14 #define USBD_CDC_EP_CMD (0x81)

15 #define USBD_CDC_EP_OUT (0x02)

16 #define USBD_CDC_EP_IN (0x82)

17 #define USBD_CDC_CMD_MAX_SIZE (8)

18 #define USBD_CDC_IN_OUT_MAX_SIZE (64)

19

20 #define USBD_STR_0 (0x00)

21 #define USBD_STR_MANUF (0x01)

22 #define USBD_STR_PRODUCT (0x02)

23 #define USBD_STR_SERIAL (0x03)

24 #define USBD_STR_CDC (0x04)

25

26 // Note: descriptors returned from callbacks must exist long enough for transfer to \

27 complete

28

29 static const tusb_desc_device_t usbd_desc_device = {

30 .bLength = sizeof(tusb_desc_device_t),

31 .bDescriptorType = TUSB_DESC_DEVICE,

32 .bcdUSB = 0x0200,

33 .bDeviceClass = TUSB_CLASS_MISC,

34 .bDeviceSubClass = MISC_SUBCLASS_COMMON,

35 .bDeviceProtocol = MISC_PROTOCOL_IAD,

36 .bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,

37 .idVendor = USBD_VID,

38 .idProduct = USBD_PID,

39 .bcdDevice = 0x0100,

40 .iManufacturer = USBD_STR_MANUF,

41 .iProduct = USBD_STR_PRODUCT,

42 .iSerialNumber = USBD_STR_SERIAL,
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43 .bNumConfigurations = 1,

44 };

45

46 static const uint8_t usbd_desc_cfg[USBD_DESC_LEN] = {

47 TUD_CONFIG_DESCRIPTOR(1, USBD_ITF_MAX, USBD_STR_0, USBD_DESC_LEN,

48 0, USBD_MAX_POWER_MA),

49

50 TUD_CDC_DESCRIPTOR(USBD_ITF_CDC, USBD_STR_CDC, USBD_CDC_EP_CMD,

51 USBD_CDC_CMD_MAX_SIZE, USBD_CDC_EP_OUT, USBD_CDC_EP_IN, USBD_CDC_IN_OUT_MAX_\

52 SIZE),

53

54 };

55

56 static char usbd_serial_str[PICO_UNIQUE_BOARD_ID_SIZE_BYTES * 2 + 1];

57

58 static const char *const usbd_desc_str[] = {

59 [USBD_STR_MANUF] = "Raspberry Pi",

60 [USBD_STR_PRODUCT] = "Pico",

61 [USBD_STR_SERIAL] = usbd_serial_str,

62 [USBD_STR_CDC] = "CDC Example",

63 };

64

65 const uint8_t *tud_descriptor_device_cb(void) {

66 return (const uint8_t *)&usbd_desc_device;

67 }

68

69 const uint8_t *tud_descriptor_configuration_cb(__unused uint8_t index) {

70 return usbd_desc_cfg;

71 }

72

73 const uint16_t *tud_descriptor_string_cb(uint8_t index, __unused uint16_t langid) {

74 #define DESC_STR_MAX (20)

75 static uint16_t desc_str[DESC_STR_MAX];

76

77 // Assign the SN using the unique flash id

78 if (!usbd_serial_str[0]) {

79 pico_get_unique_board_id_string(usbd_serial_str, sizeof(usbd_serial_str));

80 }

81

82 uint8_t len;

83 if (index == 0) {

84 desc_str[1] = 0x0409; // supported language is English

85 len = 1;
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86 } else {

87 if (index >= sizeof(usbd_desc_str) / sizeof(usbd_desc_str[0])) {

88 return NULL;

89 }

90 const char *str = usbd_desc_str[index];

91 for (len = 0; len < DESC_STR_MAX - 1 && str[len]; ++len) {

92 desc_str[1 + len] = str[len];

93 }

94 }

95

96 // first byte is length (including header), second byte is string type

97 desc_str[0] = (uint16_t) ((TUSB_DESC_STRING << 8) | (2 * len + 2));

98

99 return desc_str;

100 }

usbserial.c

1 /**

2 * @file usbserial.c

3 * @author Daniel Quadros

4 * @brief Example of a simple USB Serial Adapter

5 * @version 0.1

6 * @date 2022-06-20

7 *

8 * @copyright Copyright (c) 2022, Daniel Quadros

9 *

10 */

11

12 #include <stdlib.h>

13 #include <stdio.h>

14 #include <string.h>

15

16 #include "bsp/board.h"

17 #include "tusb.h"

18 #include "pico/stdlib.h"

19 #include "hardware/uart.h"

20

21 // Select UART and Pins

22 #define UART_ID uart0

23 #define UART_TX_PIN 0

24 #define UART_RX_PIN 1

25
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26 // Raspberry Pi Pico LED

27 #define LED_PIN 25

28

29 // Local routines

30 void serial_init(void);

31 void cdc_task(void);

32

33 // Main Program

34 int main(void)

35 {

36 // Initialize the LED

37 gpio_init(LED_PIN);

38 gpio_set_dir(LED_PIN, GPIO_OUT);

39 gpio_put(LED_PIN, 0);

40

41 // Initialize the UART

42 serial_init();

43

44 // Initialize the USB Stack

45 board_init();

46 tusb_init();

47

48 // Main loop

49 while (1)

50 {

51 tud_task();

52 cdc_task();

53 }

54

55 return 0;

56 }

57

58 // UART Initialization

59 void serial_init() {

60 // Set up UART, parameters will be overwritten later

61 uart_init(UART_ID, 115200);

62 uart_set_hw_flow(UART_ID, false, false);

63 uart_set_format(UART_ID, 8, 1, UART_PARITY_NONE);

64 uart_set_fifo_enabled(UART_ID, true);

65

66 // Set the TX and RX pins

67 gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);

68 gpio_set_function(UART_RX_PIN, GPIO_FUNC_UART);
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69 }

70

71

72 //--------------------------------------------------------------------+

73 // Device callbacks

74 //--------------------------------------------------------------------+

75

76 // Invoked when device is mounted

77 void tud_mount_cb(void) {

78 }

79

80 // Invoked when device is unmounted

81 void tud_umount_cb(void) {

82 }

83

84

85 //--------------------------------------------------------------------+

86 // USB CDC

87 //--------------------------------------------------------------------+

88

89 // Moves data between USB and UART

90 // Not optimized!

91 void cdc_task(void) {

92 // connected() check for DTR bit, its assume that the application

93 // in the host set it when connecting

94 if ( tud_cdc_connected() ) {

95

96 // send trough the USB data received by the UART

97 if (uart_is_readable(UART_ID)) {

98 while (uart_is_readable(UART_ID) && (tud_cdc_write_available() > 0)) {

99 tud_cdc_write_char(uart_getc(UART_ID));

100 }

101 tud_cdc_write_flush(); // so we don't wait for a full buffer to send

102 }

103

104 // send trough the UART data received by the USB

105 while (uart_is_writable(UART_ID) && (tud_cdc_available() > 0)) {

106 uart_putc_raw(UART_ID, tud_cdc_read_char());

107 }

108 } else {

109 // ignore data received through the UART

110 while (uart_is_readable(UART_ID)) {

111 uart_getc(UART_ID);
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112 }

113

114 // ignore data received through the USB

115 if (tud_cdc_available() > 0) {

116 tud_cdc_read_flush();

117 }

118 }

119 }

120

121 // Invoked when cdc when line state changed e.g connected/disconnected

122 void tud_cdc_line_state_cb(uint8_t itf, bool dtr, bool rts) {

123 (void) itf;

124 (void) rts;

125

126 // TODO set some indicator

127 if ( dtr )

128 {

129 // Terminal connected

130 gpio_put(LED_PIN, 1);

131 } else

132 {

133 // Terminal disconnected

134 gpio_put(LED_PIN, 0);

135 }

136 }

137

138 // Invoked when line coding is change via SET_LINE_CODING

139 void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* p_line_coding) {

140

141 // 0: 1 stop bit - 1: 1.5 stop bits - 2: 2 stop bits

142 uint stop_bits = 2;

143 if (p_line_coding->stop_bits == 0) {

144 stop_bits = 1;

145 }

146

147 // 0: None - 1: Odd - 2: Even - 3: Mark - 4: Space

148 // TODO: implement Mark & Space parity

149 uart_parity_t parity = UART_PARITY_NONE;

150 if (p_line_coding->parity == 1) {

151 parity = UART_PARITY_ODD;

152 } else if (p_line_coding->parity == 2) {

153 parity = UART_PARITY_EVEN;

154 }
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155

156 uart_set_baudrate(UART_ID, p_line_coding->bit_rate);

157 uart_set_format(UART_ID, p_line_coding->data_bits, stop_bits, parity);

158 }



Conclusion
And so we get to the end of this journey through the features of the RP2040. And what a journey it
was!

Along the way we saw many characteristics that can help to implement our projects and enhance
them:

• Dual ARM Cortex M0+ cores
• Sophisticate DMA controller
• Flexible clock generation
• Good set of peripherals: Timer, Watchdog, RTC, PWM, UART, I²C, SPI and ADC
• USB controller with host and device support
• Programmable I/O (PIO) for efficiently implementation of digital I/O

It is clear that the creators of the RP2040 have given a lot of though to performance. Not just a high
clock rate, but the ability to do many things at the same time. I have a feeling that they also included
some features just for the fun!

The C/C++ SDK has an enormous number of functions, allowing (in most cases) full control of the
hardware without meddling with registers and bits.

Now its is up to you, oh adventurous reader, to use all this power to create elegant and efficient
projects. And, also important, have fun.

Daniel Quadros
Sept 2022



Appendix A - CMake Files for RP2040
Programs
The Raspberry Pi Pico C/C++ SDK uses CMake to create the make files that control the building of
programs.

CMake can be intimidating, we are going to look here only the minimum needed for compiling
RP2040 programs and generating the uf2 files that are use to load them in flash memory.

The file we need to create for each program is the “CMakeLists.txt”.

A typical file (from an example in chapter 8) is shown bellow

1 cmake_minimum_required(VERSION 3.13)

2

3 include(pico_sdk_import.cmake)

4

5 project(hcsr04_project)

6

7 pico_sdk_init()

8

9 add_executable(hcsr04

10 hcsr04.c

11 )

12

13 pico_generate_pio_header(hcsr04 ${CMAKE_CURRENT_LIST_DIR}/hcsr04.pio)

14

15 target_link_libraries(hcsr04 PRIVATE

16 pico_stdlib

17 pico_stdio

18 hardware_pio

19 )

20

21 pico_enable_stdio_usb(hcsr04 1)

22 pico_enable_stdio_uart(hcsr04 0)

23

24 pico_add_extra_outputs(hcsr04)

Lets look at each line and see what they do and what you need to change for your own file.
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cmake_minimum_required(VERSION 3.13)

This line states the minimum version of CMAKE that can be used. This line can be ommited, if
included try to keep it in sync with the minimum version required by the SDK.

include(pico_sdk_import.cmake)

Includes the contents of the pico_sdk_import.cmake. This file contains the definitions needed to use
the SDK and must be copied to your work directory from the root directory of the SDK. Sometimes
you will need other includes (for example for the definitions in pico-extra).

project(hcsr04_project)

This defines the name of the project, hcsr04 in this case. The name of the project appears in
many other lines, a common error is forgetting to change it on some line when editing an existing
CMakeLists.txt for a new project.

pico_sdk_init()

This must be included after the project name definition and before the next lines, as it sets up things
for using the SDK.

1 add_executable(hcsr04

2 hcsr04.c

3 )

Here you list the C files that will be compiled. The first hcsr04 is the name of the project. You can add
the name of as many files as needed, separating them by whitespace (spaces, tabs and/or newlines).

pico_generate_pio_header(hcsr04 ${CMAKE_CURRENT_LIST_DIR}/hcsr04.pio)

You will only need this line if your project includes PIO code. PIO code is written in a special format
and converted into a C header file by this line. The first hcsr04 is the name of the project, hcsr04.pio
is the name of the file with the PIO code. You can have multiple lines like this if you have multiple
PIO programs.

1 target_link_libraries(hcsr04 PRIVATE

2 pico_stdlib

3 pico_stdio

4 hardware_pio

5 )

Here the libraries used are listed. The first hcsr04 is the name of the project.

1 pico_enable_stdio_usb(hcsr04 1)

2 pico_enable_stdio_uart(hcsr04 0)
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Use this lines to control to where the stdio messages will be sent (see Appendix B). If you are not
using stdio you can ommit them. hcsr04 is the name of the project, 1 will enable and 0 disable.

pico_add_extra_outputs(hcsr04)

This enables extra outputs for the build, including the ef2 file. Again, hcsr04 is the name of the
project.

There are a lot more that can be done with CMake, but this should be enough for your RP2040
projects. A full description of CMake can be found at https://cmake.org/documentation/.



Appendix B - Using stdio
Even with the availability of advanced debuggers, developers still use printf() to display debugging
messages. The RP2040 C/C++ SDK has limited support for the standard input output (stdio) routines.
The standard input and output can be used through USB or UART.

To use stdio in your project:

• include the library pico_stdlib in CMakeLists.txt
• enable stdio on USB or UART in CMakeLists.txt
• call stdio_init_all() or ‘ stdio_usb_init() or one of the stdxx_uart_init functions in your

application initialization. stdio_init_all() will initialize USB and/or UART (depending

on CMakeLists.txt) with default values. stdio_uart_init_full‘ allows to initialize stdio on
UART with full control of the parameters.

Enabling stdio in CMakeLists.txt

1 cmake_minimum_required(VERSION 3.13)

2

3 include(pico_sdk_import.cmake)

4

5 project(myproj_project)

6

7 pico_sdk_init()

8

9 add_executable(myproj

10 main.c

11 )

12

13 target_link_libraries(myproj PRIVATE

14 pico_stdlib

15 )

16

17 pico_enable_stdio_usb(myproj 1)

18 pico_enable_stdio_uart(myproj 0)

19

20 pico_add_extra_outputs(myproj)

The ‘1’ in pico_enable_stdio_usb(myproj 1) enables stdio through USB, the ‘0’ in pico_enable_-

stdio_uart(myproj 0) disables stdio through the UART.
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See in the UART example some information about how to connect the RP2040 UART through a PC
using a serial USB adapter. One of the PIO examples is using a Raspberry Pi Pico as a minimum
serial USB adapter.

The default configuration of the UART for the Pico board is:

1 #define PICO_DEFAULT_UART 0

2 #define PICO_DEFAULT_UART_TX_PIN 0

3 #ifndef PICO_DEFAULT_UART_RX_PIN

4 #define PICO_DEFAULT_UART_BAUD_RATE 115200

When using stdio to communicate to a PC through USB, the RP2040 will appear as an USB CDC
device, accessible as serial port. Depending on the PC operating system a driver may be necessary.
While using the USB can be more practical (as no adapter is needed) it has a significant binary size
cost.

Selected pico_stdio Functions

void stdio_init_all (void)

Initializes stdio on USB and/or UART, based on the settings in CMakeLists.txt. If the UART is
initialized, default configuration is used.

int getchar_timeout_us (uint32_t timeout_us)

Get a character from stdin if there is one available within timeout microseconds.

Returns the character (0 to 255) or PICO_ERROR_TIMEOUT.

int putchar_raw (int c)

Sends a character through stdout with no conversions.

int puts_raw (const char *s)

Sends a string through stdout with no conversions.

Selected pico_stdio_uart Functions

void stdout_uart_init (void)

This function initialize the UART with the default configuration for standard output only.

void stdin_uart_init (void)

This function initialize the UART with the default configuration for standard input only.

void stdio_uart_init_full (uart_inst_t *uart, uint baud_rate, int tx_pin, int rx_pin)

This function initialize the UART with an specific configuration and assign it for standard input and
output.
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Selected pico_stdio_usb Functions

bool stdio_usb_init (void)

Initializes USB for standard input and output.

bool stdio_usb_connected (void)

Returns true if a CDC is established through the USB. This means not only that the USB is connected
and recognized, but also that some software has opened the corresponding serial port.

This function is useful to make sure you will not loose messages sent before you start your
communication program in the PC. It is used in many of my examples.

The printf Function

The printf function in the SDK is a lightweight version by Marco Paland (official repository is at
https://github.com/mpaland/printf).

The printf function has the following prototype:

printf(const char *format, ...)

where ... means zero or more parameters of any type.

The format string contains the text to be printed with optional format specifiers embedded. The
format specifiers determine how the parameters are printed. Association between format specifiers
and parameters is made left to right.

Here is a typical example of using printf:

1 int counter = 5;

2 unsigned mask = 42;

3 printf ("Counter = %d, mask = %04X\n", counter, mask);

The %d will be replaced by the decimal representation of the content of counter and %04X will be
replaced by the hexadecimal representation of the content of maskwith four digits (leading 0 added as
needed). The \n is a newline character and will be converted to carriage return + line feed characters.
The output will be:

Counter = 5, mask = 002A

The information bellow was extract from the README.md file of the project, (c) Marco Paland
(info@paland.com) 2014-2019, PALANDesign Hannover, Germany - MIT License.

Format Specifiers

A format specifier follows this prototype: %[flags][width][.precision][length]type

Supported Types
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Type Output
d or i Signed decimal integer
u Unsigned decimal integer
b Unsigned binary
o Unsigned octal
x Unsigned hexadecimal integer (lowercase)
X Unsigned hexadecimal integer (uppercase)
f or F Decimal floating point
e or E Scientific-notation (exponential) floating point
g or G Scientific or decimal floating point
c Single character
s String of characters
p Pointer address
% A % followed by another % character will write a single %

Supported Flags

Flags Description
- Left-justify within the given field width; Right justification is the default.
+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a -
sign.

(space) If no sign is going to be written, a blank space is inserted before the value.
# Used with o, b, x or X specifiers the value is preceded with 0, 0b, 0x or 0X

respectively for values different than zero. Used with f, F it forces the
written output to contain a decimal point even if no more digits follow. By
default, if no digits follow, no decimal point is written.

0 Left-pads the number with zeros (0) instead of spaces when padding is
specified (see width sub-specifier).

Supported Width

Width Description
(number) Minimum number of characters to be printed. If the value to be printed

is shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional
integer value argument preceding the argument that has to be formatted.

Supported Precision



Appendix B - Using stdio 236

Precision Description
.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than
this number, the result is padded with leading zeros. The value is not
truncated even if the result is longer. A precision of 0 means that no
character is written for the value 0. For f and F specifiers: this is the
number of digits to be printed after the decimal point. By default, this
is 6, maximum is 9. For s: this is the maximum number of characters to
be printed. By default all characters are printed until the ending null
character is encountered. If the period is specified without an explicit
value for precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional
integer value argument preceding the argument that has to be formatted.

Supported Length

The length sub-specifier modifies the length of the data type.

Length d i u o x X
(none) int unsigned int
hh char unsigned char
h short int unsigned short int
l long int unsigned long int
ll long long int unsigned long long int
j intmax_t uintmax_t
z size_t size_t
t ptrdiff_t ptrdiff_t
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SWD Port
Debugging embedded projects requires some way to remotely interfere with normal program
execution and access the microcontroller registers.

The RP2040 includes support for ARM’s SWD (Serial Wire Debug). This is a two wire (SWDCLK
and SWDIO) serial interface. The Raspberry Pi Pico (and most RP2040 boards) have a connector
with this two signals plus ground.

To connect the SWD port to a PC we need some intelligent device that can implement the SWD
protocol at one end and talk to a debugger through USB at the other. The Raspberry Pi Foundation
answer to this is… a firmware for the Raspberry Pi Pico (called picoprobe).

As a bonus, this firmware also sets up a CDC device. This is useful if the RP2040 you are debugging
(the target) is using the USB port. You can send debug messages through one of the UARTs of the
target and connect it to a UART of the debugger Pico (the one with the picoprobe software).

The full instructions for setting up the picoprobe and the PC debugger are in Appendix A of the
official “Getting started with Raspberry Pi Pico”¹ document. Here I will highlight a few important
points.

Picoprobe Connections

By default, the picoprobe software uses this pins in the debugger Pico:

Pin Function
GP2 SWCLK
GP3 SWDIO
GP4 UART TX
GP5 UART RX

As just four pins are used, you may consider using a small factor RP2040 board instead of a Pico.
The picoprobe firmware is provided in source code, so you can change this pins if not appropriate
for your board (in picoprobe_config.h).

At a minimum you will have to connect SWCLK, SWDIO and GND between the debugger and the
target. If you want to connect the UART, notice that the TX pin of one side should be connected to
the RX pin of the other side.

¹https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
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The debugger Pico will be powered by the USB connection to the PC. Depending on the power
requirements of the target circuit, you may power it by connecting the VSYS of the two Picos, as
long as the target is not powered by other sources.

Picoprobe connections

Software Installation

Besides installing the picoprobe firmware in the debugger Pico and interconnecting the two Picos,
you will need to:

• Build, from the source code, a version of the OpenOCD software with the picoprobe driver
enabled. Full instructions for Linux, Windows and MacOS can be found in the Getting Started
document.

• If you are using Windows in your PC you will need a driver for the SWD interface. Again, full
instructions for downloading and installing can be found in the Getting Started document.

• To use the CDC interface you will need a serial communication program.

Building OpenOCD (specially under Windows) is a long process. As an alternative you can find an
executable version at

https://github.com/earlephilhower/pico-quick-toolchain/releases/

The usual cation on downloading and running executables from the Internet applies. Earle F.
Philhower, III is the responsible for the unofficial Raspberry Pi Pico Arduino core
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Debugging from the Command Line

To start a debugging session you will:

• start OpenOCD using the command src/openocd -f interface/picoprobe.cfg -f

target/rp2040.cfg -s tcl

• start the gdc debugger that is installed along the compiler when you set up the SDK
• connect GDB to the target with the command target remote localhost:3333

You can find tutorials and cheat sheets for GDB in the Internet.

Debugging from inside Visual Code

While this takes some work to set up, once it is done you can debug from inside Visual Code and
not worry about command line commands.

The first thing you need to debug inside Visual Studio is install the Cortex-Debug extension.

Cortex-Debug extension installation
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To setup up debugging in a project, you need to create two configuration files inside a subdirectory
of your project named .vscode. Once you created these files you can copy them to any project you
want to debug.

The first configuration file is name launch.json and its contents should be as follows:

1 {

2 "version": "0.2.0",

3 "configurations": [

4 {

5 "name": "Pico Debug",

6 "cwd": "${workspaceRoot}",

7 "executable": "${command:cmake.launchTargetPath}",

8 "request": "launch",

9 "type": "cortex-debug",

10 "servertype": "openocd",

11 "gdbPath" : "arm-none-eabi-gdb",

12 "device": "RP2040",

13 "configFiles": [

14 "interface/picoprobe.cfg",

15 "target/rp2040.cfg"

16 ],

17 "svdFile": "${env:PICO_SDK_PATH}/src/rp2040/hardware_regs/rp2040.svd",

18 "runToMain": true,

19 // Work around for stopping at main on restart

20 "postRestartCommands": [

21 "break main",

22 "continue"

23 ],

24 "searchDir": ["D:/msys64/home/Daniel/openocd/tcl"],

25 }

26 ]

27 }

The value for searchDir is the path to the tcl subdirectory of where you put OpenOCD. In my case,
I built OpenOCD from the source and installed MSYS2 at D:\msys64 and cloned the OpenOCD
repository into my “home” directory, resulting the path D:/msys64/home/Daniel/openocd/tcl.
Notice I am using forward slashes, if you use backslashes you need to duplicate them.

The second file is settings.json and it should have:



Appendix C - Debugging Using the SWD Port 241

1 {

2 // These settings tweaks to the cmake plugin will ensure

3 // that you debug using cortex-debug instead of trying to launch

4 // a Pico binary on the host

5 "cmake.statusbar.advanced": {

6 "debug": {

7 "visibility": "hidden"

8 },

9 "launch": {

10 "visibility": "hidden"

11 },

12 "build": {

13 "visibility": "default"

14 },

15 "buildTarget": {

16 "visibility": "hidden"

17 }

18 },

19 "cmake.buildBeforeRun": true,

20 "C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools",

21 "cortex-debug.openocdPath": "D:/msys64/home/Daniel/openocd/src/openocd.exe"

22 }

Change cortex-debug.openocdPath to the path to the openocd executable (openocd.exe under
Windows).

If you have built OpenOCD from source under Windows, copy the libusb-1.0.dll file from
msys64/mingw64/bin to the same directory as openocd.exe to make sure Windows will find it.

Now you can build your project, install it on the target RP2040 and debug by just pressing F5 (or
selecting Run and Debug in the icons in the left and pressing the green triangle besides Pico Debug).
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Debugging in Visual Code



Appendix D - Accessing the RP2040
Registers
TheARMprocessors interact with the hardware built into the RP2040 through registers. All registers
are memory mapped, they have memory addresses associated to them.

For mosts tasks you can leave to the SDK functions to manipulate the RP2040 registers. In this
appendix we will look how we can directly access the registers and talk about the efficiency of the
SDK functions for GPIO output.

Registers Addresses and Basic Access

The addresses and bit functions for the registers are documented in the RP2040 datasheet. In the
C/C++ SDK they are defined in various include files under src/rp2040/hardware_regs. To make
the addresses definitions more “IDE friendly” and simplify its access, structures are defined in the
include files under src/rp2040/hardware_structs.

Let’s take a look at some of the definitions for the ADC to understand how this works. In adc.h

under hardware_structs we have:

1 typedef struct {

2 _REG_(ADC_CS_OFFSET) // ADC_CS

3 io_rw_32 cs;

4

5 _REG_(ADC_RESULT_OFFSET) // ADC_RESULT

6 io_ro_32 result;

7

8 _REG_(ADC_FCS_OFFSET) // ADC_FCS

9 io_rw_32 fcs;

10

11 _REG_(ADC_FIFO_OFFSET) // ADC_FIFO

12 io_ro_32 fifo;

13

14 _REG_(ADC_DIV_OFFSET) // ADC_DIV

15 io_rw_32 div;

16

17 _REG_(ADC_INTR_OFFSET) // ADC_INTR

18 io_ro_32 intr;
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19

20 _REG_(ADC_INTE_OFFSET) // ADC_INTE

21 io_rw_32 inte;

22

23 _REG_(ADC_INTF_OFFSET) // ADC_INTF

24 io_rw_32 intf;

25

26 _REG_(ADC_INTS_OFFSET) // ADC_INTS

27 io_ro_32 ints;

28 } adc_hw_t;

29

30 #define adc_hw ((adc_hw_t *)ADC_BASE)

Starting at the end, adc_hwwill access the structure adc_hw_t at the address ADC_BASE (that is defined
in the addressmap.h under hardware_regs as 0x4004c000).

The _REG_() macro expands to nothing, it is there so that the IDE can find the names of the offsets.

To inform the compiler that the registers can change from outside the code (they are volatile) and
indicate that some of them are read-only or write-only, a few typedefs are used:

1 typedef volatile uint32_t io_rw_32;

2 typedef const volatile uint32_t io_ro_32;

3 typedef volatile uint32_t io_wo_32;

To access a register you just have to deference a pointer:

1 // Check if the most recent ADC conversion encountered an error

2 bool adc_error = adc_hw->cs & ADC_CS_ERR_BITS;

3 // Disable ADC interrupts

4 adc_hw->inte = 0;

Special Write Operations

What we saw in the previous section might look sufficient for all register operations… until you start
to worry about concurrency.

To see why, let’s look at digital output. The state of the GPIO pins is controlled by register SIO_-
GPIO_OUT, each bit in this register controls a GPIO pin. Suppose we want to turn on (set to HIGH)
GPIO0. We could do this:
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1 sio_hw->gpio_out |= 0x01;

This will compile into something like these ARM instructions:

1 movs r4, #208 ; 0xd0

2 lsls r4, r4, #24 ; R4 = 0xd0000000 = SIO_BASE

3 ldr r3, [r4, #16] ; R3 = content of SIO_GPIO_OUT

4 movs r2, #1

5 orrs r3, r2 ; R3 = R# | 1

6 str r3, [r4, #16] ; SIO_GPIO_OUT = R3

This is OK, as long as there is no one else who can change SIO_GPIO_OUT between the time we
read and the time we write it back. If we also want to change any pin in an interrupt handler, we
got a problem. If the interrupt occurs between the ldr and str instructions, the change made by the
interrupt handler will be overwritten.

We can disable interrupts before changing SIO_GPIO_OUT and re-enable them after the change. This
is tedious and error prone. Worse, it won’t help if code on the other core also changes SIO_GPIO_OUT.

What we really need is to change a register in an atomic way (that is, in an operation that cannot
be broken in parts). This is available in the RP2040 through different addresses for the SIO registers.
Using these addresses will access the same register but perform different operations when writing.

Using the 0xd0000000 SIO_BASE addresses will just write the written value to the addressed register.
There are three more variations:

• Writes to the 0xd0001000 region will perform a XOR operation: the register will be updated
to the XOR of its current value and the written value (that is, bits with value 1 in the written
value will invert the corresponding bit in the register).

• Writes to the 0xd0002000 region will perform a SET operation: the register will be updated to
the OR of its current value and the written value.

• Writes to the 0xd0003000 region will perform a CLR operation: the register will be updated to
the AND of its current value and the complement of the written value (that is, bits with value
1 in the written value will force a 0 in the register).

The SDK has defines for the address modifiers, macros to generate a modified address and, most
important, inline functions for executing this operations:

1 hw_set_bits(io_rw_32 *addr, uint32_t mask);

2 hw_clear_bits(io_rw_32 *addr, uint32_t mask);

3 hw_xor_bits(io_rw_32 *addr, uint32_t mask);

Going back to our example of turning on (set to HIGH) GPIO0, we can write:
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1 hw_set_bits(sio_hw->gpio_out, 0x01);

The update of the SIO_GPIO_OUTwill be done in a single str instruction. And be atomic, with no risk
of concurrency problems.

In the particular case of GPIOs we can also write this as:

1 sio_hw->gpio_set = 0x01;

Using the SDK Functions for GPIO Output

TL;DR;: Just use the SDK functions and don’t worry.

The basic GPIO functions are defined as inline functions (they compiler will put their
code where they are used instead of executing a subroutine call) in rp2_common/hardware_-

gpio/include/hardware/gpio.h. Here are some of them:

1 static inline void gpio_set_mask(uint32_t mask) {

2 sio_hw->gpio_set = mask;

3 }

4

5 static inline void gpio_clr_mask(uint32_t mask) {

6 sio_hw->gpio_clr = mask;

7 }

8

9 static inline void gpio_put(uint gpio, bool value) {

10 uint32_t mask = 1ul << gpio;

11 if (value)

12 gpio_set_mask(mask);

13 else

14 gpio_clr_mask(mask);

15 }

16

17 static inline void gpio_put_masked(uint32_t mask, uint32_t value) {

18 sio_hw->gpio_togl = (sio_hw->gpio_out ^ value) & mask;

19 }

gpio_set_mask() and gpio_clr_mask() will be compiled in just one instruction. Changes through
gpio_put will be atomic; the compiler is smart enough to simplify the code if gpio or value are
constants by computing the mask at compile time or eliminating the if.

If you want to change more than one pin you can use the gpio_put_masked() function. It changes
(toggles) only the bits that are different from what we want. This function will generate multiple
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instructions but is still concurrency-safe, as long the other core or interrupts do not change the same
pins at the same time. If you have two pieces of code that can change the same pins at the same
time, you have a logic problem, not a concurrency problem!
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